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1 Symbols

We use the following symbols in our paper as well as in
the supplement:

Table 1: Description of the used symbols.
Symbol Interpretation
N ∈ N Number of objects
d ∈ N Dimensionality of the feature space
J ∈ N Number of subspaces

V ∈ Rd×d Orthogonal (rotation) matrix
δ ∈ R The precision of the encoding

Imj
∈ Nmj×mj mj ×mj identity matrix

X ⊆ Rd Set of all objects
kj ∈ N Number of clusters in subspace j
mj ∈ N Dimensionality of subspace j

Pj ∈ Nd×mj Projection matrix of subspace j

pj ∈ N Number of distribution-specific parameters
in subspace j

Xj ⊆ Rmj X projected to subspace j
Oj ⊆ Xj Set of outliers in subspace j

µj,i ∈ Rmj Center of cluster i in subspace j
Σj,i ∈ Rmj×mj Covariance matrix of cluster i in subspace j

Cj,i ⊆ Xj Objects of cluster i in subspace j
Jp ∈ N Number of predicted subspaces

Jgt ∈ N Number of true subspaces
Rp ∈ NN×Jp Prediction labels matrix

Rgt ∈ NN×Jgt Ground truth labels matrix

2 Encoding the Constant Values

At this point, we would like to give a brief intuition on
how the constant components of the encoding strategy
we present in the paper could be handled.

The number of objects N and dimensionality d can
again be encoded using the natural prior for integers.
Therefore, we need L0(N) + L0(d) bits to encode these
values.

In general real values r can be encoded by sepa-
rately encoding the integer part ⌊r⌋ and the decimal
places [5]. Here, the precision δ is required for the dec-
imal places. Hence, the following applies:

L(r) = L0(⌊r⌋)− log2(δ).

This can be used to encode the d + 1 values
needed to define the hypercube. It can also be used
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(a) Subspace with 4 clusters. (b) Subspace with 3 clusters.

Figure 1: Histograms of two 1-dimensional subspaces.

to encode V . Since all the column vectors of V are
orthonormal, they all have a length of 1. Therefore, all
values of a column are less than or equal to 1 and we
can consequently ignore L0(⌊r⌋). Moreover, since the
orientation is indifferent, the last entry can be calculated
using the first d− 1 entries. Thereby each column loses
one degree of freedom. Furthermore, the orthogonal
property means that each following column loses an
additional degree of freedom. Therefore, we can encode
the first column using − log2(δ)(d− 1) bits, the second
with − log2(δ)(d − 2) bits, and so forth. All in all, the

code length of V is − log2(δ)
d(d−1)

2 .
From these encodings, it is very easy to see that the

values are actually constants that are independent of a
particular clustering result.

3 Search Space Restrictions

In this section, we would like to justify our restrictions
on the search space with an example.

In the paper, we say that we restrict the number of
clusters in case of a cluster space split as follows:

max(ksplit1 , ksplit2) ≤ koriginal ≤ ksplit1 · ksplit2 .

Also, we restrict the number of clusters for a cluster
space merge with the inverted rule.

max(koriginal1 , koriginal2) ≤ kmerge ≤ koriginal1 · koriginal2
To better understand these rules, assume that we

have the 1-dimensional subspaces shown in Figure 1
with 4 and 3 clusters, respectively. If we want to
merge these subspaces, we will always get at least 4
clusters, since 4 clusters are already contained in the
first subspace. Moreover, there are a maximum of 12
cluster combinations that can occur. Both extreme
situations are illustrated in Figure 2.
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(a) Combination with the mini-

mum number of 4 clusters.

(b) Combination with the max-

imum number of 12 clusters.

Figure 2: Two possible combinations of the two sub-
spaces from Figure 1.

With a cluster space split, essentially the same
applies, but in reverse. Here, no subspace may be
created that already has more than the original number
of clusters. Furthermore, ksplit1 · ksplit2 must be greater
than or equal to the original number of clusters. If one
of these two rules is not met, subspaces would be created
that do not fit the structure of the original subspace.

These rules can also be applied to higher dimen-
sional subspaces.

4 Pseudo-code

In order to determine the number of subspaces and
clusters within subspaces for non-redundant clustering,
the following steps are executed:

� Noise Space Split

� Cluster Space Split

� Cluster Space Merge

Additionally, we regularly combine model parame-
ters to perform a full-space execution. To better under-
stand how all these steps are linked, Algorithm 1 can be
analyzed.

5 Implementation Details of AutoNR

We want to give additional information regarding the
implementation of AutoNR.

Unfortunately, Nr-Kmeans introduced another pa-
rameter that has to be set by the user. The algorithm
optimizes V and Pj through eigenvalue decompositions.
Here, the eigenvectors represent the direction, and the
signs of the eigenvalues E determine to which subspace
the dimensions are assigned. Dimensions not matching
the structure of any cluster space are assigned to the
noise space. Consequently, the noise space will capture
all dimensions corresponding to eigenvalues ≥ 0. Yet,
the supplementary of [6] states that eigenvectors with a
negative eigenvalue close to zero should also be assigned
to the noise space. An example value is given in the re-
spective publication. However, the optimal threshold

changes depending on the input dataset. We want to
avoid such hard thresholds in our approach. Therefore,
we utilize the described encoding strategy to determine
which dimensions should be contained in the cluster and
which in the noise space.

The rotation matrix V can be updated indepen-
dently of the new subspace dimensionalities. Therefore,
V can be calculated a priori and used in the process
to define the new mcluster and mnoise. The parame-
ters present in the current iteration of Nr-Kmeans can
be used to calculate the temporary MDL costs of the
model. Since the cluster assignments, cluster centers,
and scatter matrices stay constant during this opera-
tion, only those costs that depend on the subspace di-
mensionalitiesmj and the projections Pj need to be con-
sidered. We start with a cluster space that only obtains
the dimension corresponding to the lowest eigenvalue
and a noise space containing the other |E| − 1 dimen-
sions. The approach is repeated with a rising number
of cluster space dimensions until the MDL costs exceed
the result from the previous iteration or the dimension-
ality of the cluster space equals the number of negative
eigenvalues. This means that an initial threshold is no
longer necessary

We further utilize the initialization procedure of k-
means++ [1] to seed the cluster centers.

6 Evaluation Setup

Datasets: syn3 is a synthetic dataset with three
subspaces containing 4, 3, and 2 clusters. Each cluster
was created using a Gaussian distribution. For syn3o,
we randomly added 150 uniformly distributed outliers in
each subspace. We additionally created the NRLetters
dataset. It consists of 10000 9 × 7 RGB images
of the letters ’A’, ’B’, ’C’, ’X’, ’Y’, and ’Z’ in the
colors pink, cyan, and yellow. Moreover, in each
image, a corner pixel is highlighted in the color of
the letter. This results in three possible clusterings.
An extract of this dataset can be seen in the paper
in Figure 1. Wine is a real-world dataset from the
UCI1 repository with three clusters. The UCI dataset
Optdigits consists of 5620 8×8 images, each representing
a digit. The Fruits [4] dataset was created using
105 images of apples, bananas, and grapes in red,
green, and yellow. The images have been preprocessed,
resulting in six attributes. The Amsterdam Library
of Object Image2 dataset (ALOI ) contains images of
1000 objects recorded from different angles. For our
analysis, we use a common subset of this data consisting
of 288 images illustrating the objects ’box’ and ’ball’

1https://archive.ics.uci.edu/ml/index.php
2http://aloi.science.uva.nl/

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited



(a) Increasing N (d = 6, J = 3). (b) Increasing d (N = 5000, J = 3). (c) Increasing J (N = 5000, d = 2J). (d) Legend.

Figure 3: Scalability of AutoNR without (-) and with (+) outlier detection compared to its competitors. All tests
are repeated ten times and the mean is stated.

in the colors green and red. Dancing Stick Figures [3]
(DSF ) is a dataset containing 900 20 × 20 images. It
comprises two subspaces describing three upper- and
three lower-body motions. CMUface is again taken
from the UCI repository and is composed of 640 30×32
gray-scaled images showing 20 persons in four different
poses (up, straight, left, right). Among those images,
16 show glitches resulting in 624 useful objects. The
WebKB3 dataset contains 1041 Html documents from
four universities. These web pages belong to one of four
categories. We preprocessed the data using stemming
and removed stop words and words with a document
frequency < 1%. Afterward, we removed words with a
variance < 0.25, resulting in 323 features.

Comparison Methods: We compare the results
of AutoNR without (AutoNR-) and with (AutoNR+)
outlier detection against the parameter-free algorithms
ISAAC [9] and MISC [8] as well as NrDipmeans [7].
Furthermore, we extend the subspace clustering ap-
proach FOSSCLU [2] to iteratively identify new sub-
spaces by removing the subspaces found in previous it-
erations. For NrDipmeans and FOSSCLU we have to
state the desired number of subspaces. In case of FOS-
SCLU we need to define limits for mj and kj . We set
those to 1 ≤ mj ≤ 3 and 2 ≤ kj ≤ 10. We wanted to set
the upper bound of kj to 20 for CMUface, so FOSSCLU
would be able to determine all parameters correctly.
Unfortunately, this leads to memory issues. Where re-
quired, AutoNR runs 15 executions of Nr-Kmeans. The
significance for NrDipmeans is set to 0.01.

Experiments are conducted using the Scala imple-
mentations of Nr-Kmeans and NrDipmeans and the
Matlab implementations of ISAAC and MISC as ref-
erenced in [6], [7], [9] and [8] respectively. Regarding
FOSSCLU, we extend the Java version referenced in [2]
as described above. AutoNR is implemented in Python.

3http://www.cs.cmu.edu/ webkb/

7 Runtime Analysis

We conduct runtime experiments on datasets with a
rising number of objects N , dimensions d, and sub-
spaces J . The created cluster spaces are always two-
dimensional and contain three Gaussian clusters each.

All experiments are performed on a computer with
an Intel Core i7-8700 3.2 GHz processor and 32GB
RAM. The runtime results again correspond to the
average of ten consecutive executions. The outcomes
are illustrated in Figure 3.

The charts show that our approach is well appli-
cable to high-dimensional datasets. The runtime in-
creases only slightly with additional noise space dimen-
sions (3(b)). ISAAC and MISC have to conduct an ISA
which does not scale well to high-dimensional datasets.
FOSSCLU has to perform Givens rotations multiple
times, which is an expensive operation. On the other
hand, our framework performs most steps in lower-
dimensional subspaces where the overall dimensionality
has no significant influence. If additional cluster spaces
accompany a higher dimensionality, the runtimes of all
algorithms behave similarly (3(c)). For large datasets,
the differences in runtime are also much less prominent
(3(a)). Only MISC needs significantly more time be-
cause a kernel graph regularized semi-nonnegative ma-
trix factorization has to be performed.

Due to the additional operations required to cal-
culate the outlier distance threshold for each subspace
in each iteration, the execution of AutoNR with out-
lier detection expectably takes more time than without.
Furthermore, the cluster centers and covariance matri-
ces are updated after each outlier detection procedure.

NrDipmeans is the fastest in all experiments. How-
ever, it must be noted that NrDipmeans knows the cor-
rect number of subspaces and therefore does not need
to run tests to identify J . Furthermore, in the case
of J = 11, it settles with the initial two clusters in
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Algorithm 1: Parameter search algorithm.

1 Function main(dataset X)

2 V = initialize randomly
3 Rbest = Initial result (single noise space)
4 // Sort by MDL costs, add noise space last
5 sortedSpaces = sortSubspaces(Rbest)
6 for j ∈ sortedSpaces do
7 Xj = {xV Pj |x ∈ X}
8 if j is cluster space then
9 // Split space into two cluster spaces

10 js1 , js2 = clusterSpaceSplit(Xj , kj)

11 else if j is noise space then
12 // Split space into cluster and noise

space
13 js1 , js2 = noiseSpaceSplit(Xj)

14 // Check MDL costs
15 if cost(js1) + cost(js2) < cost(j) then
16 // Join parameters for full-space

execution
17 Vtmp, Ptmp, µtmp =

joinParams(Rbest, V, js1 , js2)
18 Rtmp, Vtmp =

fullSpace(X,Vtmp, Ptmp, µtmp)
19 // Check full-space MDL costs
20 if cost(Rtmp) < cost(Rbest) then
21 Rbest = Rtmp; V = Vtmp

22 go to line 5

23 Rbest, V = merging(Rbest, V )

24 if merging was successful then
25 go to line 5

26 return Rbest

27 Function merging(Rbest, V )

28 for each pair (j1, j2) of cluster spaces do
29 Xj1,j2 = {xV Pj1,j2 |x ∈ X}
30 jm = clusterSpaceMerge(Xj1,j2 , kj1 , kj2)
31 // Check MDL costs
32 if cost(jm) < cost(j1) + cost(j2) then
33 // Join parameters for the full-space

execution
34 Vtmp, Ptmp, µtmp =

joinParams(Rbest, V, jm)
35 Rtmp, Vtmp =

fullSpace(X,Vtmp, Ptmp, µtmp)
36 // Check full-space MDL costs
37 if cost(Rtmp) < cost(Rbest) then
38 Rbest = Rtmp; V = Vtmp

39 if better result found then
40 go to line 28

41 return Rbest, V

Figure 4: Results of various parametrizations of Nr-
Kmeans on NRLetters. k1 is set to 6. The left image
shows the NMI, and the right the F1 results.

each subspace and does not invest time in finding better
structures. Therefore, it seems to have problems run-
ning with a high J . AutoNR, on the other hand, almost
always correctly identifies all clusters in all subspaces.

Our procedure could be further accelerated by, for
example, parallelizing the multiple executions of Nr-
Kmeans with identical parameters.

8 Comparison to Nr-Kmeans

We perform additional experiments using the original
Nr-Kmeans algorithm, to show that the good experi-
mental results are based on our proposal and not merely
on the integration of Nr-Kmeans. The new results are
shown in Table 2. As in the paper, we repeated each
experiment ten times and added the average score ± the
standard deviation to the table.

AutoNR returns superior results in most experi-
ments, even though Nr-Kmeans already knows the cor-
rect number of subspaces and clusters for each subspace.
Only for the non-redundant dataset ALOI does the orig-
inal Nr-Kmeans perform better regarding the F1 score.
This case, however, has already been mentioned in the
paper. The biggest advantage of our application is the
fact that it discovers structures one by one while pre-
serving the ability to adjust already found subspaces.
This gives great flexibility, so that possible errors can
be compensated in a following iteration. Another ad-
vantage is the definition of the noise space using MDL
(see supplement Section 5), as it can be seen with the
datasets CMUface, WebKB, NRLetters, Wine and Opt-
digits.

One could argue that the multiple repetitions of Nr-
Kmeans included in each run of AutoNR strongly favor
our algorithm. However, we would like to counter this
by stating that Nr-Kmeans by itself is often unable to
achieve a perfect result just once (e.g., for syn3 ). In
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Table 2: Results of AutoNR- and AutoNR+ compared to our Nr-Kmeans version, where the dimensionality of the
noise space is determined through MDL (see supplement Section 5), and the original Nr-Kmeans implementation
on various datasets. The left side shows the NMI results in %, the F1 results in % are shown on the right. All
experiments were run ten times, and the average result ± the standard deviation is stated. The best algorithm
for each subspace is marked in bold.

NMI (%) F1 (%)

Dataset Subspace AutoNR- AutoNR+
Nr-Kmeans

(MDL-based noise space)
Nr-Kmeans
(Original)

AutoNR- AutoNR+
Nr-Kmeans

(MDL-based noise space)
Nr-Kmeans
(Original)

syn3 1st (kj=4) 100 ± 0 100 ± 0 73± 20 59± 16 100 ± 0 100 ± 0 72± 18 61± 11
(N=5000, d=11) 2nd (kj=3) 100 ± 0 100 ± 0 81± 13 75± 17 100 ± 0 100 ± 0 82± 12 78± 16

3rd (kj=2) 100 ± 0 100 ± 0 72± 22 75± 17 100 ± 0 100 ± 0 79± 16 81± 14

syn3o 1st (kj=4) 86± 10 97 ± 0 62± 17 54± 13 83± 18 99 ± 0 64± 14 57± 10
(N=5150, d=11) 2nd (kj=3) 90± 10 96 ± 0 67± 15 69± 11 91± 17 99 ± 0 73± 14 75± 9

3rd (kj=2) 77± 20 94 ± 0 56± 10 68± 13 80± 27 99 ± 0 63± 10 77± 13

Fruits Species (kj=3) 85 ± 9 83± 7 70± 14 74± 11 89 ± 9 87± 7 78± 11 78± 11
(N=105, d=6) Color (kj=3) 17± 2 18 ± 1 15± 2 16± 2 47 ± 3 44± 5 42± 3 44± 3

ALOI Shape (kj=2) 62± 4 64 ± 3 47± 26 54± 30 65± 2 65± 1 73± 13 77 ± 15
(N=288, d=611) Color (kj=2) 62± 4 64 ± 3 34± 0 31± 10 65± 2 65± 1 66 ± 0 66 ± 0

DSF Body-up (kj=3) 100 ± 0 100 ± 0 70± 20 81± 26 100 ± 0 100 ± 0 77± 16 85± 20
(N=900, d=400) Body-low (kj=3) 100 ± 0 100 ± 0 63± 22 56± 30 100 ± 0 100 ± 0 70± 17 68± 22

CMUface Identity (kj=20) 68± 4 64± 4 78 ± 6 75± 7 38± 4 34± 3 57 ± 9 52± 9
(N=624, d=960) Pose (kj=4) 35 ± 3 33± 1 28± 8 26± 6 45 ± 4 42± 4 41± 10 37± 10

WebKB Category (kj=4) 32± 2 34 ± 3 32± 3 30± 2 50± 5 58 ± 7 48± 3 48± 2
(N=1041, d=323) University (kj=4) 56± 4 57 ± 3 47± 8 45± 7 51± 2 52± 3 54 ± 7 52± 3

NRLetters Letter (kj=6) 100 ± 0 100 ± 0 85± 9 83± 9 100 ± 0 100 ± 0 78± 13 72± 12
(N=10000, d=189) Color (kj=3) 100 ± 0 100 ± 0 52± 29 39± 25 100 ± 0 100 ± 0 61± 22 52± 18

Corner (kj=4) 100 ± 0 100 ± 0 57± 26 48± 25 100 ± 0 100 ± 0 61± 23 51± 19

Wine
(N=178, d=13)

Type (kj=3) 76± 5 85± 3 87 ± 2 79± 15 81± 6 90± 4 92 ± 2 87± 10

Optdigits
(N=5620, d=64)

Digit (kj=10) 73± 1 74 ± 1 72± 2 70± 2 54± 4 58± 4 66 ± 3 64± 3

contrast, AutoNR often assigns the points to the correct
clusters every time. This shows that the iterative
identification of subspaces can be beneficial, with the
effect becoming stronger the more subspaces there are.

9 Importance of Correct Parametrization

To better assess the importance of a correct
parametrization of non-redundant clustering ap-
proaches, we perform another experiment. Suppose
that we know that NRLetters comprises six different
letters. We know nothing about the other clustering
possibilities. Therefore, we try different parameters
for Nr-Kmeans using a brute-force search. Here,
we assume that no subspace contains more than six
clusters. The NMI and F1 results can be seen in
Figure 4. To arrive at a single number that indicates
the quality of a non-redundant clustering result, we
compute the average result over all three subspaces.

score(Rgt, Rp) =
1

Jgt

∑
1≤j≤Jgt

scorej(R
gt, Rp),

where scorej(R
gt, Rp) is the evaluation method as de-

scribed in the paper and Jgt is the number of label sets
in the ground truth. Each run is repeated ten times and
the best result is added to the heatmap.

We see that the quality of the results deteriorates
away from the optimum (k2 = 4, k3 = 3) even though
we know the correct number of clusters in the first
subspace. This shows the value of our framework, which
achieved a perfect result in all ten iterations and that,
without prior knowledge.
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covering non-redundant k-means clusterings in optimal
subspaces, in 24th ACM SIGKDD, 2018, pp. 1973–
1982.

[7] D. Mautz, W. Ye, C. Plant, and C. Böhm, Non-
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