

Tutorial: Application of Deep Clustering Algorithms

32nd ACM International Conference on Information and Knowledge Management

Collin Leiber^{1,2}, Lukas Miklautz^{3,4}, Claudia Plant^{3,5}, Christian Böhm³

¹Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany ²MCML

³Faculty of Computer Science, University of Vienna, Vienna, Austria

⁴UniVie Doctoral School Computer Science, Vienna, Austria

⁵ds:UniVie, Vienna, Austria

Presenters

Collin Leiber

Claudia Plant

Lukas Miklautz

Christian Böhm

Hands-On

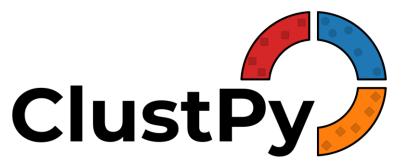
- Prepared jupyter notebook with examples
- Implemented in PyTorch and ClustPy

- Collab link for jupyter notebook: <u>https://tinyurl.com/cikm23-clustpy</u>
- Download link for material: <u>https://tinyurl.com/cikm23-material</u>

ClustPy Package

• Link: <u>https://github.com/collinleiber/ClustPy</u>

- > 20 recently introduced (deep) clustering algorithms implemented in sklearn style → Easy to use and apply
- > 70 benchmarking data sets (e.g., UCI, UCR, Torchvision, MedicalMNIST)
- Many performance metrics and visualization methods

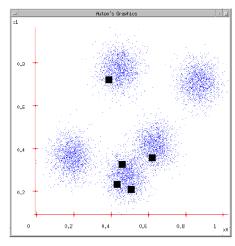


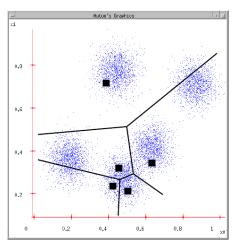
Outline

- Introduction to Clustering
- Introduction to Deep Clustering
- Application of Deep Clustering Algorithms
- Recent Approaches
- Outlook

Clustering – Find a "meaningful" grouping

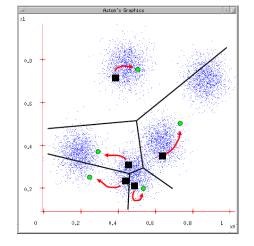
Recap: K-Means

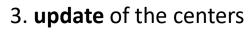


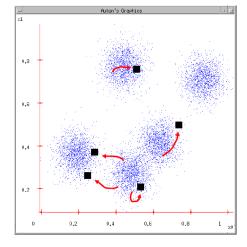


1. random **initialization** of the K cluster centers

2. **assignment** of objects to the closest center







4. iteration of (2) and(3) until convergence

- + fast convergence,
- + well-defined objective function,
- + based on statistical model.

Recap: K-Means

Algorithm k-Means

Input Parameter: Number K of clusters; Randomly initialize the K cluster centers $\mu_1 \dots \mu_K$ Iterate the following steps until convergence: Assign each object x_i to the nearest centroid μ_j Update the cluster centroids $\mu = (\mu_1 \dots \mu_K)$

Objective function:

$$L(\mu; x) = \sum_{i} L(\mu; x_{i}) = \sum_{i} \frac{1}{2} (x_{i} - d_{i}(\mu))^{2}$$

Where the function $j \coloneqq d_i(\mu)$ assigns the i^{th} point x_i to its closest centroid μ_j

SGD-K-Means

- Stochastic Gradient Descent Version of K-Means [BB94]
 - Learned parameters for K-Means are the centroids $\mu_j, j \in \{0, 1, ..., K\}$
 - Runs several times (epochs) over the full data set in randomized order

$$L(\mu; x_i) = \frac{1}{2} (x_i - d_i(\mu))^2$$

SGD-K-Means

- Stochastic Gradient Descent Version of K-Means [BB94]
 - Learned parameters for K-Means are the centroids $\mu_j, j \in \{0, 1, \dots, K\}$
 - Runs several times (epochs) over the full data set in randomized order

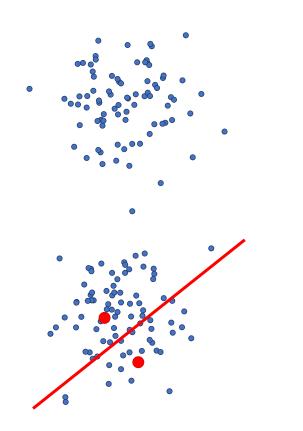
$$L(\mu; x_i) = \frac{1}{2} (x_i - d_i(\mu))^2$$

• The gradient update for the loss function w.r.t. μ

$$\Delta \mu = -\alpha \cdot \frac{\partial L(\mu; x_i)}{\partial \mu} = \begin{cases} \alpha \cdot (x_i - \mu_j), & \text{if } j = d_i(\mu) \\ 0, & \text{otherwise} \end{cases}$$

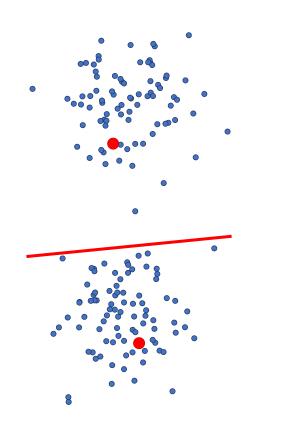
- Each point x_i moves its respective center μ_i closer to x_i by $\Delta \mu$
- Optimal learning rate $\alpha = 1/n_i$ where n_i is number of objects in cluster j

SGD-K-Means converges much faster



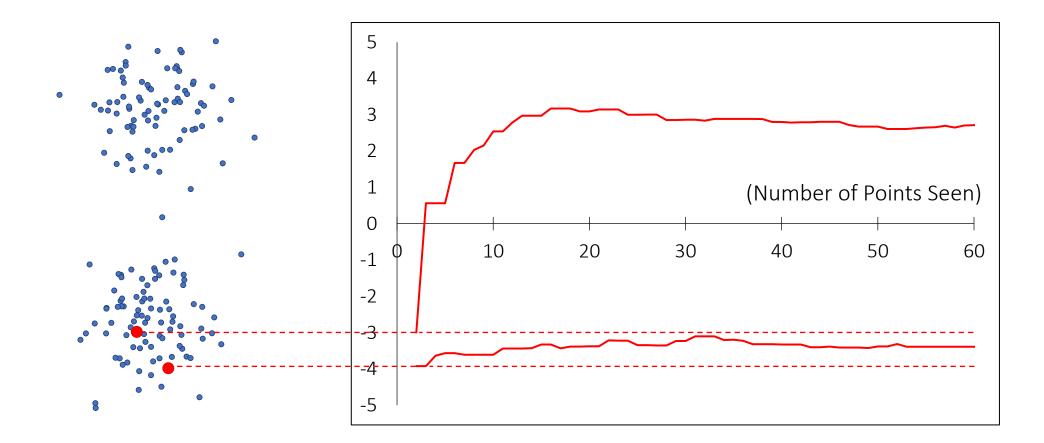
- The random initialization may go wrong
- Classical K-Means would base a complete round of assignment on the resulting boundary

SGD-K-Means converges much faster



- The random initialization may go wrong
- Classical K-Means would base a complete round of assignment on the resulting boundary
- After having seen e.g. 10 points, the centers are already much better with SGD-K-Means
- SGD-K-Means continuously improves centers

SGD-K-Means converges much faster



Minibatch-K-Means

Algorithm Minibatch-K-Means [S10] Input Parameter: Number K of clusters; Randomly initialize the K cluster centers $\mu_1 \dots \mu_K$ Iterate the following steps until convergence: Select a Minibatch M; Update centroids $\mu_1 \dots \mu_K$ for each x_i in M: $\Delta \mu = -\alpha \cdot \frac{\partial L(\mu; x_i)}{\partial \mu} = \begin{cases} \alpha \cdot (x_i - \mu_j), & \text{if } j = d_i(\mu) \\ 0, & \text{otherwise} \end{cases}$

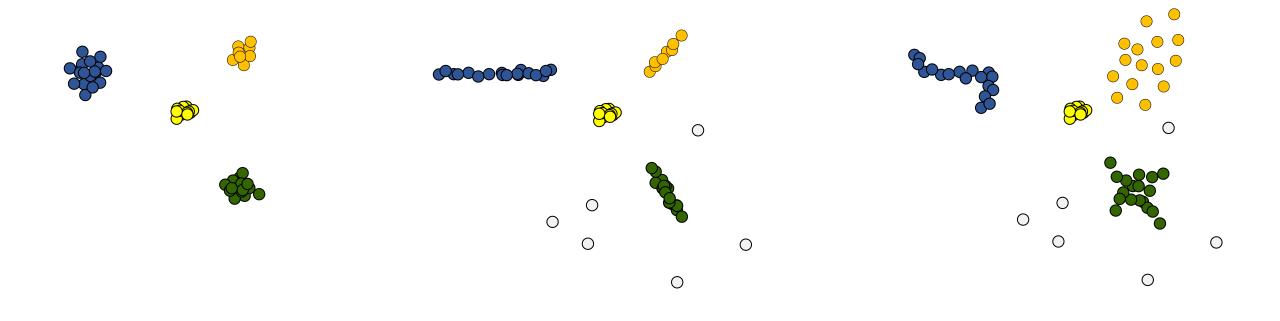
Further improvements, e.g. in [PB10, APB13]:

- Consider additional update of center μ whenever the cluster loses a point x_i
- Consider occupation of network/bus when parallel processes exchange information of centers $\mu_1 \ ... \ \mu_K$

Outline

- Introduction to Clustering
- Introduction to Deep Clustering
- Application of Deep Clustering Algorithms
- Recent Approaches
- Outlook

The Curse of Dimensionality in Clustering



- Full-dimensional
- Gaussian clusters
- without outliers or noise.

- Subspace clusters
- and outliers.

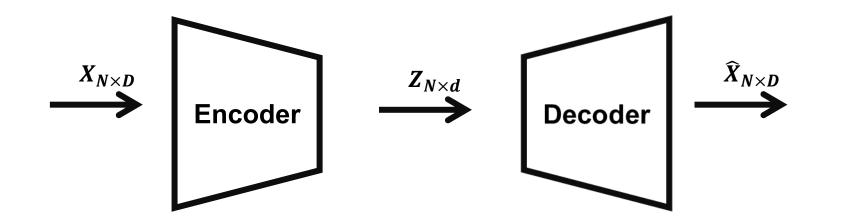
- Arbitrarily shaped subspace clusters,
- of different density,
- noise and outliers.

Deep Representation Learning

- Successful for image, text, video, audio ...
 - Structured data
 - High data volume
- Automated feature extraction (Representation Learning)
 - Feature engineering requires domain knowledge
- Easy to parallelize
 - GPU friendly
 - Works on large amount of data

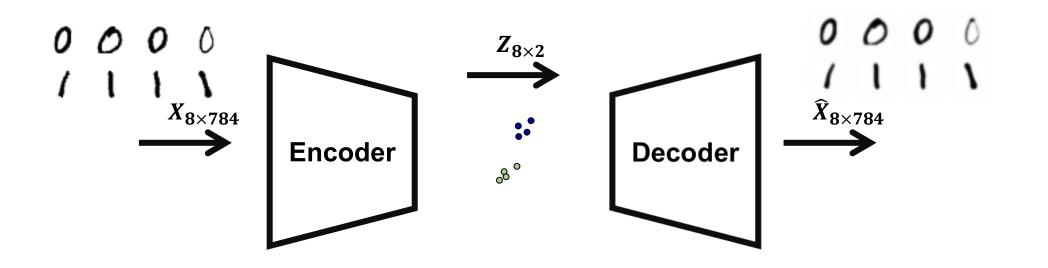
Prerequisite: Autoencoder

- Learning is done via self-supervision requires no labels
- The prediction (output) is a reconstruction of the input data
- Goal: Low dimensional representation (embedding) of input data



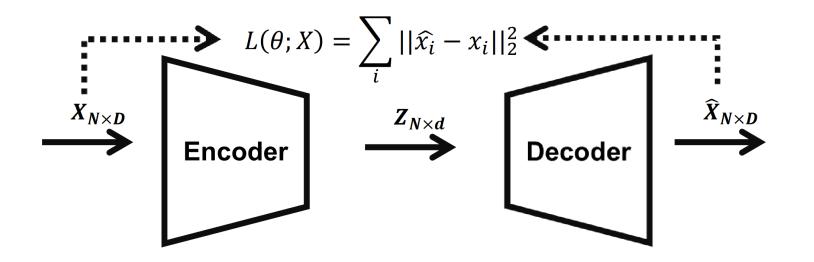
Prerequisite: Autoencoder

- Learning is done via self-supervision requires no labels
- The prediction (output) is a reconstruction of the input data
- Goal: Low dimensional representation (embedding) of input data



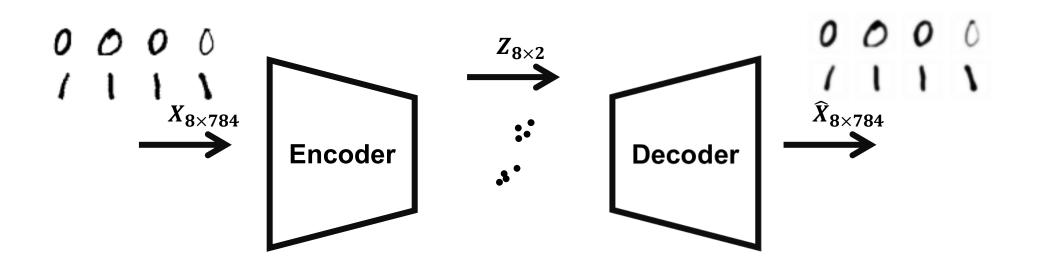
Autoencoder – Loss Function

- Compares the reconstruction \hat{x} with the input x
- Quantifies the reconstruction loss which we want to minimize
- Common choices: Cross Entropy, Sum of Squared Differences



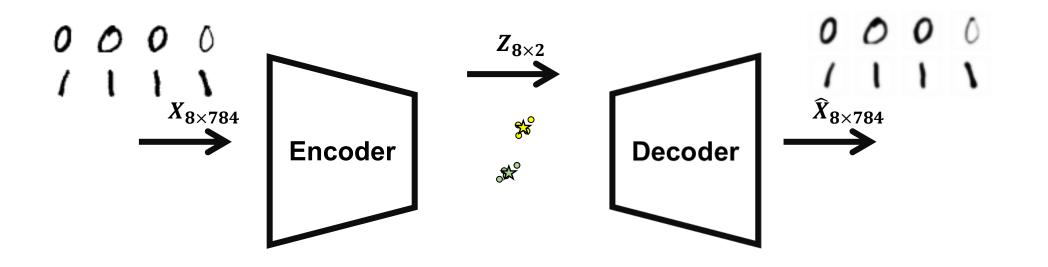
Sequential Deep Clustering Approach

1) Use an autoencoder to learn a non-linear embedding of your data i.e., Feature learning/Representation learning



Sequential Deep Clustering Approach

- 1) Use an autoencoder to learn a non-linear embedding of your data i.e., Feature learning/Representation learning
- 2) Cluster that data with some algorithm of your choice



Sequential Deep Clustering Approach

- 1) Use an autoencoder to learn a non-linear embedding of your data i.e., Feature learning/Representation learning
- 2) Cluster that data with some algorithm of your choice

Note: This is not necessarily a bad idea and often useful, but it might limit our solution -> We are stuck to the initial representation

Notebook Example

• Clustering of Autoencoder embedded space

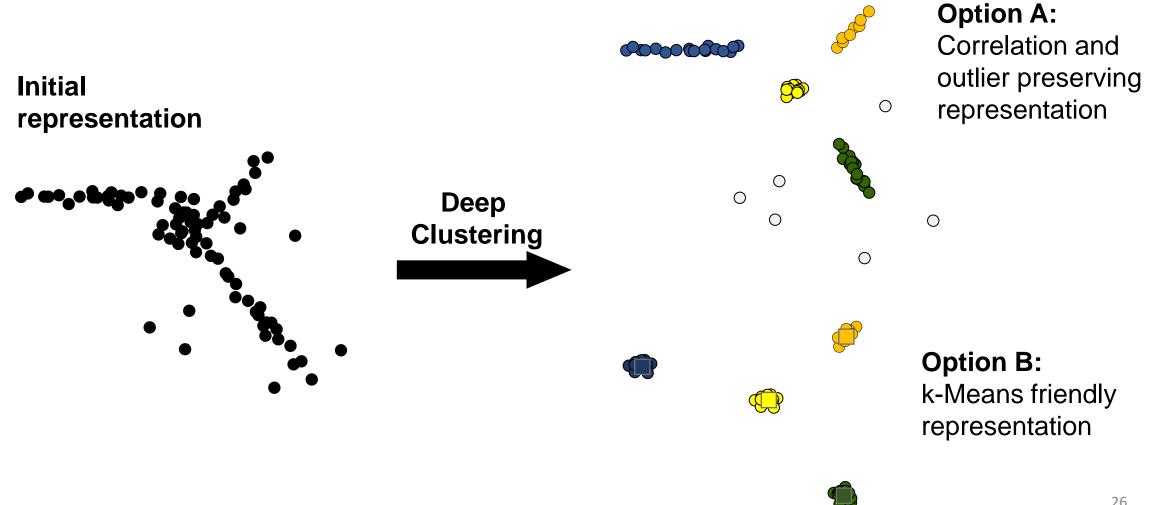
Ground Truth Centers - Image Space

Ground Truth Centers - Autoencoder

Cluster Centers

Can we do better?

Yes! – Learn A Cluster Friendly Representation



Deep Clustering - Overview

- Idea: Include the notion of clustering already during the autoencoder training
- Goal: We want to find all relevant cluster structure and improve it!

Problems:

- We need to specify a cluster model (inherit assumptions)
- We face circular dependency problem
 - In order to learn a good representation we need to know what clusters we have
 - In order to learn a good clustering we need to have already a good representation
 - Deep Learning is not a magic bullet that solves this problem

Deep Clustering – Toy Example

- **Problems**: We still face circular dependency problem
 - In order to learn a good representation we need to know what clusters we have
 - In order to learn a good clustering we need to have already a good representation
- Here: Clusters are ripped apart

Deep Clustering - Approaches

- Alternating optimization
 - Alternate between optimizing the representation and updating the clustering assignments
- Joint optimization
 - Cluster assignments and representation are updated together

Deep Clustering - Approaches

- Alternating optimization
 - Alternate between optimizing the representation and updating the clustering assignments
- Joint optimization
 - Cluster assignments and representation are updated together
- Overall Goal: Learn a cluster friendly embedding
 - Cluster friendly = Enhanced separation of clusters, Cluster structure is more distinct
 - Increase inter-cluster distance and decrease intra-cluster distance
 - Include structural constraints to avoid the "destruction" of structure, i.e. ripped apart clusters

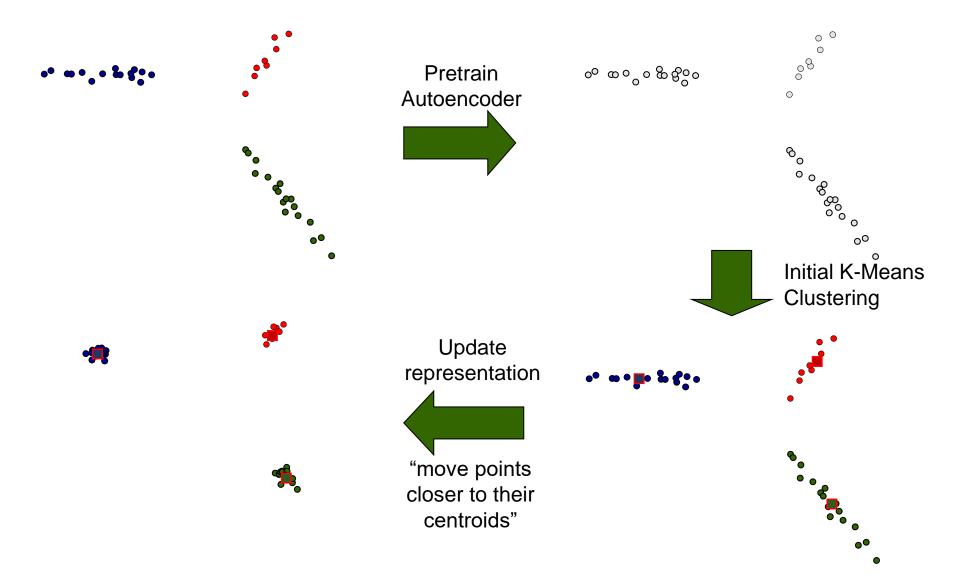
Outline

- Introduction to Clustering
- Introduction to Deep Clustering
- Application of Deep Clustering Algorithms
- Recent Approaches
- Outlook

Alternating Optimization

- 1) Pretrain an autoencoder to learn a non-linear embedding of your data
 - a) Set the dimensionality to min(k, # features). This "upper bound" avoids losing too much information. For a motivation of this rule of thumb see e.g. the connections of K-means and PCA [DH04]
- 2) Initialize clustering with some algorithm (e.g. K-means)

Toy Example – 1 Iteration



Alternating Optimization

- 1) Pretrain an autoencoder to learn a non-linear embedding of your data
 - a) Set the dimensionality to min(k, # features). This "upper bound" avoids losing too much information. For a motivation of this rule of thumb see e.g. the connections of K-means and PCA [DH04]
- 2) Initialize clustering with some algorithm (e.g. K-means)

While cluster labels change:

- a) Fix centroids and update the autoencoder parameters
 - Move points closer to their centroids
- b) Fix autoencoder parameters and update centroids and assignments

DCN-Deep Clustering Networks

- Deep Clustering Network (DCN) [YFSH17]
 - Based on Mini-Batch K-means [S10]
 - Centroids are not optimized via SGD, but are updated explicitly
 - They use hard cluster assignments which are not differentiable

DCN-Deep Clustering Networks

- Deep Clustering Network (DCN) [YFSH17]
 - Based on Mini-Batch K-means [S10]
 - Centroids are not optimized via SGD, but are updated explicitly
 - They use hard cluster assignments which are not differentiable
- Alternating optimization between clustering and autoencoder
 - Because the calculation of cluster assignments is non-differentiable
 - Alternate between
 - 1) K-Means Step
 - 1) Assignments
 - 2) Centroid updates
 - 2) Autoencoder Step

Preserve Global structure via Reconstruction and make clusters more "K-Means friendly" [YFSH17] by "moving" points closer to their centroids

DCN-Deep Clustering Networks

- Deep Clustering Network (DCN) [YFSH17]
- Alternating optimization between clustering and autoencoder
 - Alternate between
 - 1) K-Means Step
 - 2) Autoencoder Step (Reconstruction + Compression)

Overall Loss Function $l = \lambda l_c + l_R$

Compression loss: $l_C = ||z_i - \mu_i||_2^2$ Reconstruction loss: $l_R = ||\hat{x}_i - x_i||_2^2$

where λ is a hyperparameter weighing the importance of cluster structure

Notebook Example

• Deep clustering with DCN

Ground Truth Centers - Image Space

Ground Truth Centers - Autoencoder

Cluster Centers

Joint Optimization

- 1) Pretrain an autoencoder to learn a non-linear embedding of your data
 - a) Set the dimensionality to min(k, # features).
- 2) Initialize clustering with some algorithm (here K-means)

Joint Optimization

- 1) Pretrain an autoencoder to learn a non-linear embedding of your data
 - a) Set the dimensionality to min(k, # features).
- 2) Initialize clustering with some algorithm (here K-means)
- 3) While cluster labels change

Jointly optimize the clustering parameters (update centroids and assignments), together with the autoencoder

Joint Optimization

- 1) Pretrain an autoencoder to learn a non-linear embedding of your data
 - a) Set the dimensionality to min(k, # features).
- 2) Initialize clustering with some algorithm (here K-means)
- 3) While cluster labels change

Jointly optimize the clustering parameters (update centroids and assignments), together with the autoencoder

- Cluster procedure need to be differentiable
- Assignments need to be soft e.g. assignment probabilities
- Usually faster, because we can completely parallelize the procedure

DKM - Deep k-Means

- Deep k-Means (DKM) [FTG19]
- Truly joint learning of the representation and the k-Means clustering parameters
- Builds directly on the k-Means loss:

$$\sum_{x \in X} ||x - c(x, M)||_2^2, \text{ where } c(x, M) = \underset{\mu \in M}{\operatorname{argmin}} ||x - \mu||_2^2$$

=> For Deep Clustering: $\mathcal{L} = \sum_{x \in X} \mathcal{L}_{rec}(x) + \lambda ||\operatorname{enc}(x) - c(\operatorname{enc}(x), M)||_2^2$

• Problem: *f* must be continuously differentiable!

DKM - Deep k-Means

• We need a function
$$G_k(\mathbf{x}, \alpha, M) = \begin{cases} 1 & \text{if } \mu_k = c(\text{enc}(c), M) \\ 0 & \text{otherwise} \end{cases}$$

• This would lead to: |M|

$$\mathcal{L} = \sum_{x \in X} \mathcal{L}_{rec}(x) + \lambda \sum_{k} ||\operatorname{enc}(x) - \mu_k||_2^2 G_k(\mathbf{x}, \alpha, M)$$

DKM - Deep k-Means

• We need a function
$$G_k(\mathbf{x}, \alpha, M) = \begin{cases} 1 & \text{if } \mu_k = c(\text{enc}(c), M) \\ 0 & \text{otherwise} \end{cases}$$

• This would lead to:

$$\mathcal{L} = \sum_{x \in X} \mathcal{L}_{rec}(x) + \lambda \sum_{k}^{|\mathcal{M}|} ||\operatorname{enc}(x) - \mu_k||_2^2 G_k(\mathbf{x}, \alpha, M)$$

• Use a parameterized softmax function

$$G_k(\mathbf{x}, \alpha, M) = \frac{e^{-\alpha ||\operatorname{enc}(x) - \mu_k||_2^2}}{\sum_{k'}^{|M|} e^{-\alpha ||\operatorname{enc}(x) - \mu_{k'}||_2^2}}$$

• Formulation is fully differentiable regarding the parameters of the autoencoder and the cluster centers ${\cal M}$

$\mathsf{DKM} - \mathsf{Deep} \ \mathsf{k} - \mathsf{Means}$ $\bullet \ \mathcal{L} = \sum_{x \in X} \mathcal{L}_{rec}(x) + \lambda \sum_{k}^{|M|} ||\operatorname{enc}(x) - \mu_{k}||_{2}^{2} \frac{e^{-\alpha |\operatorname{enc}(x) - \mu_{k}||_{2}^{2}}}{\sum_{k'}^{|M|} e^{-\alpha |\operatorname{enc}(x) - \mu_{k'}||_{2}^{2}}}$

- For α close to 0 all centroids are equally weighted, for very large α it simulates hard cluster assignments
- How to choose a good value for α ?
 - 1. Possibility
 - Pretrain the autoencoder
 - Start clustering process with a large α (e.g., 1000)
 - 2. Possibility
 - Do not use pretraining
 - Use an annealing strategy for α .
 - Start with small values and increase α after a certain amount of epochs

Notebook Example

• Deep clustering with DKM

Ground Truth Centers - Image Space

Ground Truth Centers - Autoencoder

Cluster Centers

Coffee Break

Welcome back. Any questions?

- Deep Embedded Clustering (DEC) [XGF16]
 - Based on SGD-K-means with a student t-kernel for measuring the distance of an embedded data point z_i to centroid μ_j in relation to its distance to all other centroids μ_j, except μ_j:

$$q_{i,j} = \frac{\left(1 + ||z_i - \mu_j||_2^2\right)^{-1}}{\sum_{j'} \left(1 + ||z_i - \mu_{j'}||_2^2\right)^{-1}} = \frac{distance \ to \ \mu_j}{summed \ distance \ to \ all \ other \ centroids}$$

• $q_{i,j}$ are soft assignments of the i^{th} data point to the j^{th} cluster centroid

- $Q_{N \times K}$ is the matrix of soft assignments $q_{i,j}$ of N data points to the K centroids
 - Achieved by measuring the distance with the Student's t-kernel between all embedded points z_i and centroids μ_i .

- $Q_{N \times K}$ is the matrix of soft assignments $q_{i,j}$ of N data points to the K centroids
 - Achieved by measuring the distance with the Student's t-kernel between all embedded points z_i and centroids μ_i .
- Target distribution $P_{N \times K}$:

[XGF16] define the following desirable properties for the target distribution P:

- strengthen predictions on data points assigned with high confidence
- normalize loss contribution for each centroid

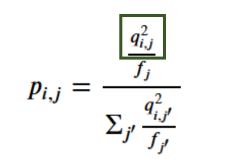
$$p_{i,j} = \frac{\frac{q_{i,j}^2}{f_j}}{\sum_{j'} \frac{q_{i,j'}^2}{f_{j'}}}$$

51

- $Q_{N \times K}$ is the matrix of soft assignments $q_{i,j}$ of N data points to the K centroids
 - Achieved by measuring the distance with the Student's t-kernel between all embedded points z_i and centroids μ_i .
- Target distribution $P_{N \times K}$:

[XGF16] define the following desirable properties for the target distribution P:

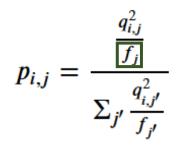
- strengthen predictions on data points assigned with high confidence
- normalize loss contribution for each centroid
- $q_{i,j}^2$ strengthens high confidence predictions
- → Assignments close to one will be kept higher than undecided ones that are close to 0.5



- $Q_{N \times K}$ is the matrix of soft assignments $q_{i,j}$ of N data points to the K centroids
 - Achieved by measuring the distance with the Student's t-kernel between all embedded points z_i and centroids μ_i .
- Target distribution $P_{N \times K}$:

[XGF16] define the following desirable properties for the target distribution P:

- strengthen predictions on data points assigned with high confidence
- normalize loss contribution for each centroid
- $q_{i,j}^2$ strengthens high confidence predictions
- $f_j \coloneqq \sum_i q_{i,j}$ (soft) frequency per cluster
- \rightarrow Dividing by f_j renormalizes by cluster size to avoid that large clusters distort the embedding



• Minimize the KL divergence between the target distribution *P* and the cluster assignment Matrix *Q*:

$$l = l_C = KL(P||Q) = \sum_{i} \sum_{j} p_{i,j} \log\left(\frac{p_{i,j}}{q_{i,j}}\right)$$

• Measures how closely the assignment matrix *Q* matches the target distribution *P*

• Minimize the KL divergence between the target distribution *P* and the cluster assignment Matrix *Q*:

$$l = l_C = KL(P||Q) = \sum_{i} \sum_{j} p_{i,j} \log\left(\frac{p_{i,j}}{q_{i,j}}\right)$$

- Measures how closely the assignment matrix ${\cal Q}$ matches the target distribution ${\cal P}$
- Overall Intuition Increase separation of clusters by moving embedded points closer to their centroids μ_i and repelling points from other centroids μ_j , $j \neq i$.
- Note that DEC does not use the reconstruction loss l_R during the joint optimization process $^{\rm 55}$

Notebook Example

• Deep clustering with DEC

Ground Truth Centers - Image Space

Ground Truth Centers - Autoencoder

Cluster Centers

IDEC-Improved Deep Embedded Clustering

- [GGLY17] proposed to keep the reconstruction loss during joint optimization with DEC to avoid such distorted solutions
- Their approach IDEC uses during the joint optimization both losses

Overall loss function $l = l_R + \lambda l_c$

Compression loss:
$$l_C = KL(P||Q)$$

Reconstruction loss: $l_R = ||\widehat{x_i} - x_i||_2^2$

IDEC-Improved Deep Embedded Clustering

- [GGLY17] proposed to keep the reconstruction loss during joint optimization with DEC to avoid such distorted solutions
- Their approach IDEC uses during the joint optimization both losses

Overall loss function $l = l_R + \lambda l_c$

Compression loss: $l_C = KL(P||Q)$

Reconstruction loss: $l_R = ||\hat{x}_i - x_i||_2^2$

- This alleviates to some degree the previous problem, but depends heavily on the hard to tune weighting hyperparameter λ
- Introduces a new problem called Feature Drift [MMKK19]
 - The reconstruction loss and the clustering loss have conflicting goals
 - Reconstruction Loss: Preserve the space as best as possible to reconstruct all features of the data
 - Compression Loss: Increase the separation of the clusters and only focus on the most discriminative features

Notebook Example

• Deep clustering with IDEC

Ground Truth Centers - Image Space

Ground Truth Centers - Autoencoder

Cluster Centers

Results

- Notebook summary
- What worked?
- What could be improved?

Results

- Notebook summary
- What worked?
- What could be improved? --> Augmentation

Motivation - Augmentation

- Invariant representation learned by the autoencoder
 - Autoencoder learns to ignore certain patterns, i.e., rotations, noise, shifts,...
- Invariances inside a cluster
 - Cluster membership should not change due to spurious patterns i.e., slight rotations, lighting conditions, noise, shifts,...
- Include domain knowledge in the form of augmentation
 - E.g., we know that slight rotations of digits do not change the label assigned to them.
 - Strong rotations might flip the label, e.g., digits 6 and 9

- Cluster membership should not change due to spurious patterns i.e. slight rotations (Invariances inside clusters)
- $x^A \coloneqq aug(x)$ where $aug(\cdot)$ are different augmentations that we add to the original data point x.

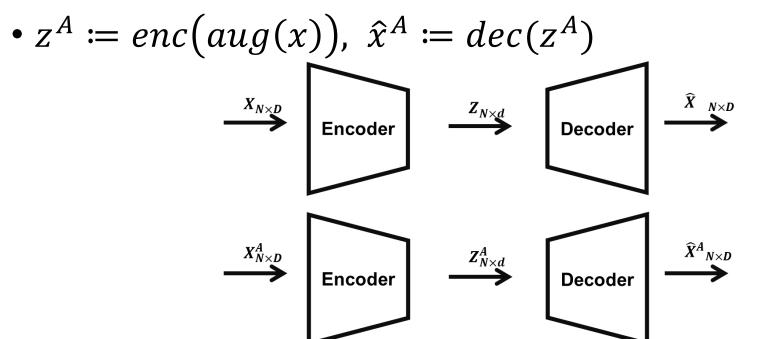
•
$$z^A \coloneqq enc(aug(x)), \ \hat{x}^A \coloneqq dec(z^A)$$

- Cluster membership should not change due to spurious patterns i.e. slight rotations (Invariances inside clusters)
- $x^A \coloneqq aug(x)$ where $aug(\cdot)$ are different augmentations that we add to the original data point x.

•
$$z^{A} \coloneqq enc(aug(x)), \ \hat{x}^{A} \coloneqq dec(z^{A})$$

 $\xrightarrow{x_{N \times D}}$
Encoder
 $\xrightarrow{z_{N \times d}}$
Decoder
 $\xrightarrow{\hat{x}_{N \times D}}$

- Cluster membership should not change due to spurious patterns i.e. slight rotations (Invariances inside clusters)
- $x^A \coloneqq aug(x)$ where $aug(\cdot)$ are different augmentations that we add to the original data point x.



- Cluster membership should not change due to spurious patterns i.e. slight rotations (Invariances inside clusters)
- $x^A \coloneqq aug(x)$ where $aug(\cdot)$ are different augmentations that we add to the original data point x.
- $z^A \coloneqq enc(aug(x)), \ \hat{x}^A \coloneqq dec(z^A)$
- New loss function $l = l_C^A + l_R^A$ $l_C^A = ||z_i - \mu_i||_2^2 + ||z_i^A - \mu_i||_2^2$ $l_R^A = ||\hat{x}_i - x_i||_2^2 + ||\hat{x}_i^A - x^A||_2^2$

- Cluster membership should not change due to spurious patterns i.e. slight rotations (Invariances inside clusters)
- $x^A \coloneqq aug(x)$ where $aug(\cdot)$ are different augmentations that we add to the original data point x.
- $z^A \coloneqq enc(aug(x)), \ \hat{x}^A \coloneqq dec(z^A)$
- New loss function $l = l_C^A + l_R^A = ||z_i \mu_i||_2^2 + ||z_i^A \mu_i||_2^2$ $l_C^A = ||z_i - \mu_i||_2^2 + ||z_i^A - \mu_i||_2^2$ $l_R^A = ||\hat{x}_i - x_i||_2^2 + ||\hat{x}_i^A - x^A||_2^2$
- We use the cluster assignments and centroids learned from our "clean" examples
- Thus we force the augmented data points to be in the same cluster as their originals

Notebook Example

Augmented images

Original images

Outline

- Introduction to Clustering
- Introduction to Deep Clustering
- Application of Deep Clustering Algorithms
- Recent Approaches
- Outlook

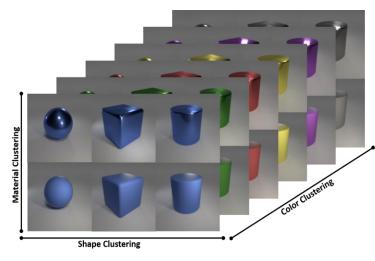
Specialized Deep Clustering Algorithms

- Flat & Centroid based approaches
 - DEC [XGF16]
 - IDEC [GGLY17]
 - DCN [YFSH17]
 - ACe/DeC [MBMTBP21]
- Spectral Clustering
 - SpectralNet [SSLBNK18]
 - DualAE [YDZYL19]
- Mutual Information
 - IMSAT [HMTMS17]
 - IIC [JHV19]
- Density based
 - DDC [LCCC18]

- Probabilistic Methods
 - ClusterGAN [MALK19]
 - VADE [JYTTZ17]
- Other Approaches
 - Hierarchical Clustering
 - DeepECT [MPB19]
 - Non-Redundant Clustering:
 - ENRC [MMABP20]
 - Subspace Clustering
 - DSC [JZLSR17]
 - K-estimation
 - DipDECK [LBSBP21]

Deep Non-Redundant Clustering

• Embedded Non-Redundant Clustering algorithm (ENRC) [MMABP20]

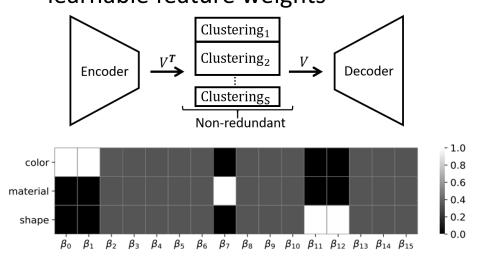


Non-redundant clusterings:

- Shapes : Cube, Cylinder, Sphere
- Colors: Red, Blue, Green, Yellow Purple, Grey
- Material: Rubber, Metal

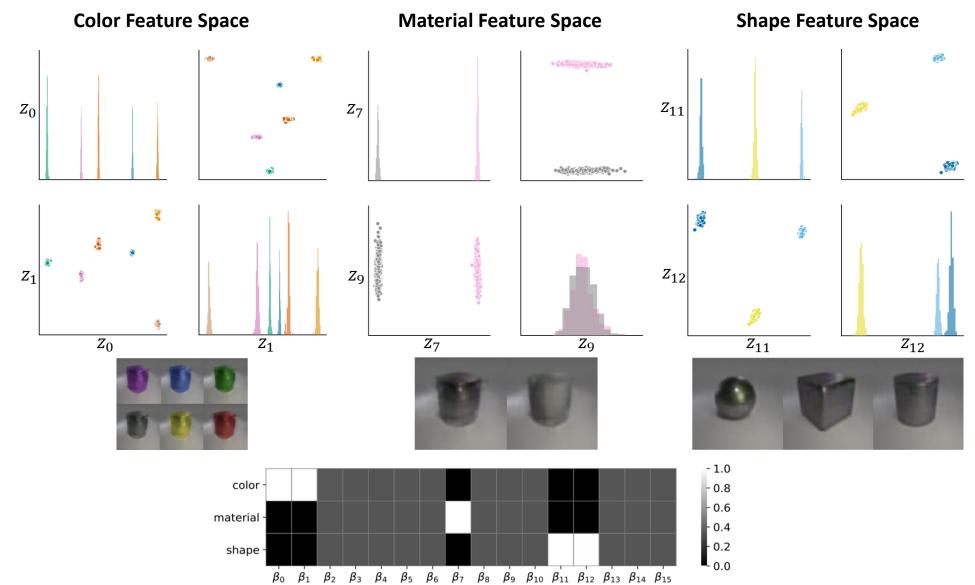
How to find all three clusterings with unsupervised deep learning?

→ Non-redundant clustering layer: Softly split the embedded space with learnable feature weights



71

Deep Non-Redundant Clustering



72

• Deep Embedded Cluster Tree (DeepECT) [MPB19]

Naïve Approach

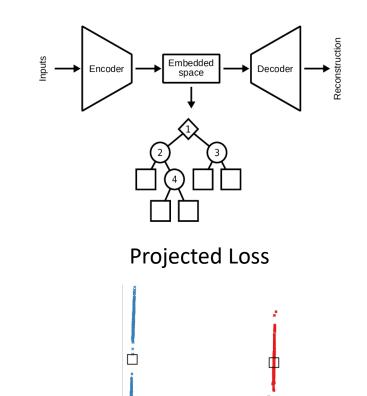
۲

- Based on Bisecting Kmeans model
- Recursively split embedded space in with k = 2
- Uses projected cluster loss

Example:

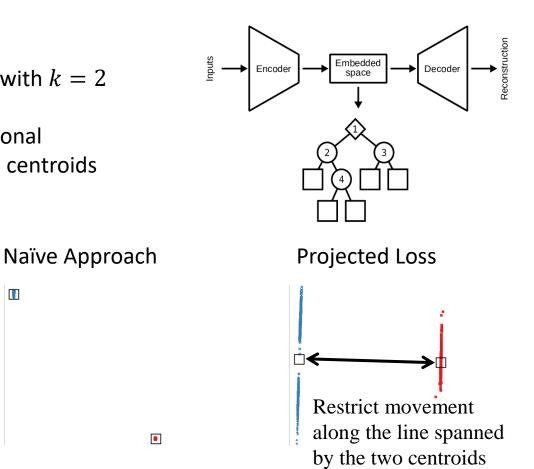
Original

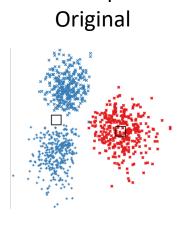
 Preserve structure along orthogonal dimensions spanned by the two centroids



• Deep Embedded Cluster Tree (DeepECT) [MPB19]

- Based on Bisecting Kmeans model
- Recursively split embedded space in with k = 2
- Uses projected cluster loss
 - Preserve structure along orthogonal ٠ dimensions spanned by the two centroids





Example:

74

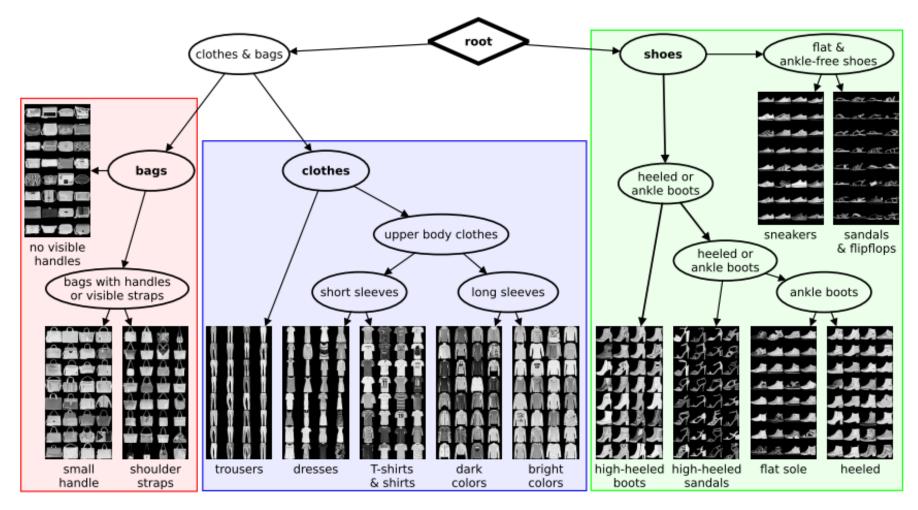
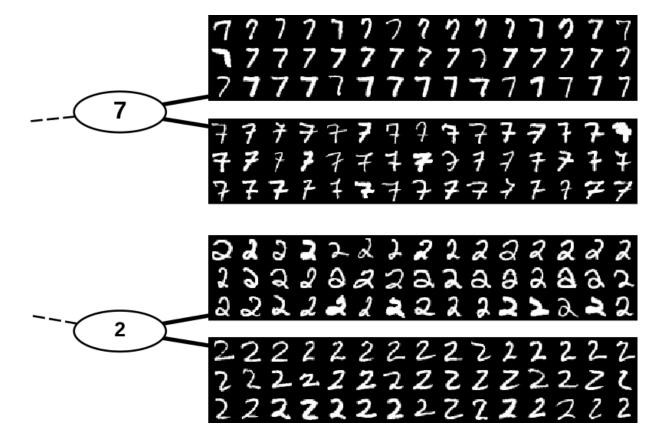


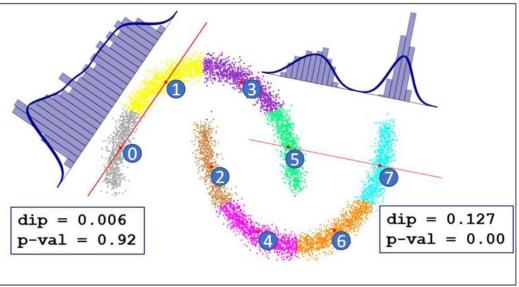
Fig. 2. The diagram shows a cluster tree for the Fashion-MNIST dataset. Each leaf node shows randomly sampled objects assigned to it. The labels are interpretations by the authors. The colored areas highlight the three dominant sub-trees representing three types of objects found in the dataset: bags, clothes, and shoes.

Finding populations and sub-populations and hierarchical structures e.g. different types of 7's and 2's

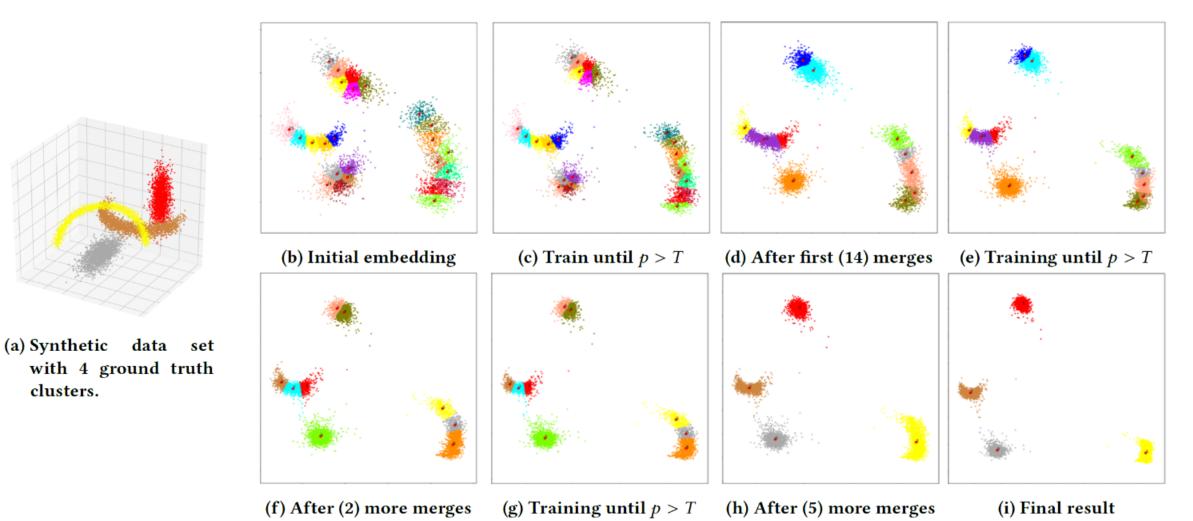


Deep Clustering with k-estimation

- Dip-based Deep Embedded Clustering with k-estimation (DipDECK) [LBSBP21]
- Problem: 'True' number of clusters is often unknown
- Idea: Overestimate the number of clusters and identify similar microclusters
 - Use Dip-test of unimodality to rate similarity
 - Micro-Clusters describing a common structure should be placed close to each other -> If similarity is high enough, they can be merged



Deep Clustering with k-estimation



78

Outline

- Introduction to Clustering
- Introduction to Deep Clustering
- Application of Deep Clustering Algorithms
- Recent Approaches
- Outlook

Discussion

- Pros:
 - Finds clusters which are non-linearly hidden in the original space
 - Can find higher "semantic" clusters e.g. digits, traffic signs, ...
 - No need for feature engineering, "only" need to choose an architecture which fits the data type, e.g. convolutional neural nets for image data.
 - Fast inference for clustering unseen data from the same (unknown) distribution
 - Centroids and interpolations in the embedded space can be reconstructed and visualized in the original space.
 - Domain knowledge can be incorporated as data invariances
 - Scales to large amounts of data and dimensions

Discussion

• Cons:

- Only useful for larger quantities of data
- Works mostly on structured data, e.g., images, sound, text, ...
- Embedded space is hard to interpret (black box optimization)
- Many hyperparameters (number of clusters, learning rate, batch size, architecture, ...)
- Highly dependent on a good initialization (local optima)
- Sensitive to noise and outliers
- Research until now is mostly empirical, no strong theoretical guarantees
- High runtime in comparison to "classical" clustering methods
- Need for specialized hardware (e.g., CUDA enabled GPUs, TPUs, ...)

In Summary

- Representation learning for clustering (Deep Clustering) is an active research area (about 10 years of research)
- Many interesting algorithms have been proposed transferring "classical" clustering algorithms to the deep learning framework (similar to kernel approaches)
- Many problems of deep learning (e.g., high number of hyperparameters), which can be "easily" tackled in supervised learning are difficult to solve in deep unsupervised learning

Question for the Audience

• Aside from clustering, in which cases are clustered representations useful?

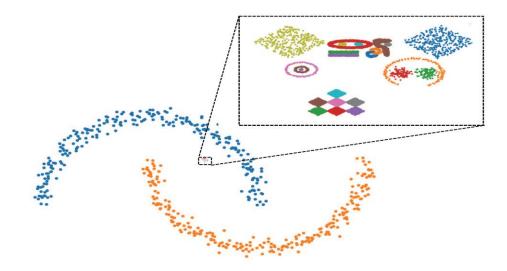
Question for the Audience

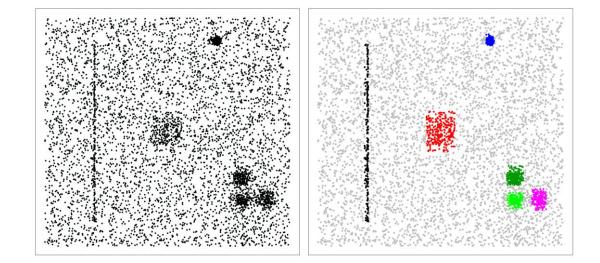
- Aside from clustering, in which cases are clustered representations useful?
 - Some thoughts:
 - In cases where abstraction is of interest, e.g., preserving only prototypical information
 - Simplified representation
 - Representations with less nuisance factors
 - In cases where we want to enforce cluster structure in the representation
 - Information retrieval
 - Task acquisition in meta-reinforcement learning [JHGELF19]
 - Other cases?
- In which might they be less useful?
 - Fine grained classification tasks
 - Generative tasks?
 - ...

Open Problems in Deep Clustering

- Imbalanced clusters
- Adversarial Examples
- Fairness & Explainable AI
- Dependence on hyperparameters

Imbalanced Clusters, Noise, Outliers

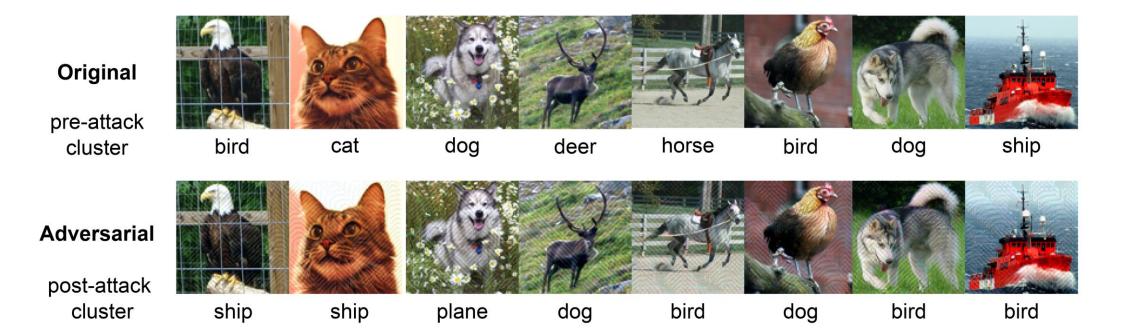




Imbalanced clusters of different scales [DMPB22].

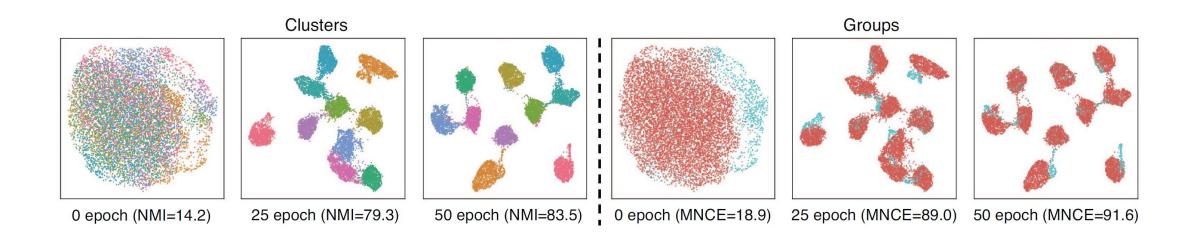
Massive amounts of noise points (80%) [MP16].

Adversarial Examples



Slight modifications of the training images learned by a GAN can fool deep clustering methods [CSM22].

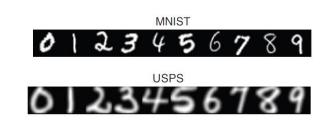
Fairness



Challenges:

- Single user-specified protected attribute,
- Weighting between fairness and quality.

Protected attribute: Data source [ZLHPLP23]



Considering the evolution of clustering methods

	High-dimensional data	Interpretability	Runtime	Parameterization
Traditional algorithms, e.g. K- means (1950 and older)		+++	+++	-
Subspace and spectral methods, e.g., NR-K-means [MYPB17] (starting in the 1990ies)	+	++	++	
Deep clustering methods, e.g., ENRC [MMABP20] (popular since 2010)	+++	+		

...hybrid methods might be the future.

	High-dimensional data	Interpretability	Runtime	Parameterization
Traditional clustering algorithms		+++	+++	-
Subspace and spectral methods	+	++	++	
Deep clustering methods	+++	+		
Hybrid methods	+++ expressiveness where needed?	++ interpretable where possible?	+ spend effort where needed?	partly automatic?

Contact

- Collin Leiber: leiber@dbs.ifi.lmu.de
- Lukas Miklautz: <u>lukas.miklautz@univie.ac.at</u>
- Claudia Plant: claudia.plant@univie.ac.at
- Christian Böhm: <u>christian.boehm@univie.ac.at</u>

References

[AGSC18]	Elie Aljalbout, Vladimir Golkov, Yawar Siddiqui, Daniel Cremers:
	Clustering with Deep Learning: Taxonomy and New Methods. CoRR abs/1801.07648 (2018)
[APB13]	Muzaffer Can Altinigneli, Claudia Plant, Christian Böhm:
	Massively parallel expectation maximization using graphics processing units. KDD 2013: 838-846
[BCV13]	Yoshua Bengio, Aaron C. Courville, Pascal Vincent:
	Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8): 1798-1828 (2013)
[BB94]	Léon Bottou, Yoshua Bengio:
	Convergence Properties of the K-Means Algorithms. NIPS 1994: 585-592
[CLX16]	Shaosheng Cao, Wei Lu, Qiongkai Xu:
	Deep Neural Networks for Learning Graph Representations. AAAI 2016: 1145-1152
[CSM22]	Anshuman Chhabra, Ashwin Sekari, Prasant Mohapatra:
	On the robustness of Deep Clustering Models. Adversarial Attacks and Defenses. NeurIPS2022
[DH04]	Chris H. Q. Ding, Xiaofeng He:
	K-means clustering via principal component analysis. ICML 2004
[DMPB22]	Walid Durani, Dominik Mautz, Claudia Plant, Christian Böhm:
	DBHD: Density-based clustering for highly varying density. ICDM 2022: 921-926
[FTG19]	Maziar Moradi Fard, Thibaut Thonet, and Eric Gaussier
	Deep k-means: Jointly clustering with k-means and learning representations. Pattern Recognition Letters
[GBC16]	Ian Goodfellow and Yoshua Bengio and Aaron Courville:
	Deep Learning. MIT Press, 2016
[GGLY17]	Xifeng Guo, Long Gao, Xinwang Liu, Jianping Yin:
	Improved Deep Embedded Clustering with Local Structure Preservation. IJCAI 2017: 1753-1759
[HPGAC18]	Philip Häusser, Johannes Plapp, Vladimir Golkov, Elie Aljalbout, Daniel Cremers:
	Associative Deep Clustering: Training a Classification Network with No Labels. GCPR 2018: 18-32
[JHGELF19]	Allan Jabri, Kyle Hsu, Abhishek Gupta, Ben Eysenbach, Sergey Levine, Chelsea Finn:
	Unsupervised Curricula for Visual Meta-Reinforcement Learning. NeurIPS 2019: 10519-10530

References

[JHV19]	Xu Ji, João F. Henriques, Andrea Vedaldi:
	Invariant Information Distillation for Unsupervised Image Segmentation and Clustering. ICCV 2019: forthcoming
[JZLSR17]	Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann, Ian D. Reid:
	Deep Subspace Clustering Networks. NIPS 2017: 24-33
[LBSBP21]	Collin Leiber, Lena Bauer, Benjamin Schelling, Claudia Plant, Christian Böhm
	Dip-based deep embedded clustering with k-estimation. KDD 2021: 903-913
[MSFK18]	Naveen Sai Madiraju, Seid M. Sadat, Dimitry Fisher, Homa Karimabadi
	Deep Temporal Clustering : Fully Unsupervised Learning of Time-Domain Features. CoRR abs/1802.01059 (2018): unpublished
[MZLC19]	Qianli Ma, Jiawei Zheng, Sen Li, Gary W. Cottrell:
	Learning Representations for Time Series Clustering. NeurIPS 2019: 3776-3786
[MPB19]	Dominik Mautz, Claudia Plant and Christian Böhm:
	Deep Embedded Cluster Tree. ICDM 2019: forthcoming
[MBMTBP21]	Lukas Miklautz, Lena Bauer, Dominik Mautz, Sebastian Tschiatschek, Christian Böhm and Claudia Plant:
	Details (Don't) Matter: Isolating Cluster Information in Deep Embedded Spaces. IJCAI 2021: 2826-2832
[MMABP20]	Lukas Miklautz, Dominik Mautz, Muzaffer Can Altinigneli, Christian Böhm and Claudia Plant:
	Deep Embedded Non-Redundant Clustering. AAAI 2020: 5174-5181
[MMKK19]	Nairouz Mrabah, Naimul Mefraz Khan, Riadh Ksantini:
	Deep Clustering with a Dynamic Autoencoder. CoRR abs/1901.07752 (2019): unpublished
[MYPB18]	Dominik Mautz, Wei Ye, Claudia Plant, Christian Böhm:
	Towards an Optimal Subspace for K-Means. KDD 2017: 365-373
[MP16]	Samuel Maurus, Claudia Plant:
	Skinny-dip: Clustering in a Sea of Noise. KDD 2016: 1055-1064
[MALK19]	Sudipto Mukherjee, Himanshu Asnani, Eugene Lin, Sreeram Kannan:
	ClusterGAN: Latent Space Clustering in Generative Adversarial Networks. AAAI 2019: 4610-4617
[PB10]	Claudia Plant, Christian Böhm:
	Parallel EM-Clustering: Fast Convergence by Asynchronous Model Updates. ICDM Workshops 2010: 178-185

References

[\$10]	D. Sculley:
	Web-scale k-means clustering. WWW 2010: 1177-1178
[SSLBNK18]	Uri Shaham, Kelly P. Stanton, Henry Li, Ronen Basri, Boaz Nadler, Yuval Kluger:
	SpectralNet: Spectral Clustering using Deep Neural Networks. ICLR 2018
[TNSZ19]	Panagiotis Tzirakis, Mihalis A. Nicolaou, Björn W. Schuller, Stefanos Zafeiriou:
	Time-series Clustering with Jointly Learning Deep Representations, Clusters and Temporal Boundaries. FG 2019: 1-5
[VLLBM10]	Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol:
	Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 11: 3371-3408 (2010)
[HMTMS17]	Weihua Hu, Takeru Miyato, Seiya Tokui, Eiichi Matsumoto, Masashi Sugiyama:
	Learning Discrete Representations via Information Maximizing Self-Augmented Training. ICML 2017: 1558-1567
[XGF16]	Junyuan Xie, Ross B. Girshick, Ali Farhadi:
	Unsupervised Deep Embedding for Clustering Analysis. ICML 2016: 478-487
[YDZYL19]	Xu Yang, Cheng Deng, Feng Zheng, Junchi Yan, Wei Liu:
	Deep Spectral Clustering Using Dual Autoencoder Network. CVPR 2019: 4066-4075
[YFSH17]	Bo Yang, Xiao Fu, Nicholas D. Sidiropoulos, Mingyi Hong:
	Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering. ICML 2017: 3861-3870
[JYTTZ17]	Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, Hanning Zhou:
	Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering. IJCAI 2017: 1965-1972
[ZLHPLP23]	Pengxin Zeng, Yunfan Li, Peng Hu, Dezhong Peng, Jiancheng Lv, Xi Peng
	Deep Fair Clustering via Maximizing and Minimizing Mutual Information: Theory Algorithm and Metric. CVPR 2023: 23986-23995

94