> Lniversitat
wien

LMU

Tutorial: Application of Deep
Clustering Algorithms

32nd ACM International Conference on Information and Knowledge Management

Collin Leiber!2, Lukas Miklautz3#, Claudia Plant3>, Christian Bohm?3

lnstitute of Informatics, Ludwig-Maximilians-Universitat Miinchen, Munich, Germany

ZMCML
3Faculty of Computer Science, University of Vienna, Vienna, Austria

4UniVie Doctoral School Computer Science, Vienna, Austria
>ds:UniVie, Vienna, Austria

£\
ClustPy/J

Presenters

Collin Leiber

P

Claudi PIt Christian Bohm

Hands-On

* Prepared jupyter notebook with examples

* Implemented in PyTorch and ClustPy

* Collab link for jupyter notebook: https://tinyurl.com/cikm23-clustpy

* Download link for material: https://tinyurl.com/cikm23-material

https://tinyurl.com/cikm23-clustpy
https://tinyurl.com/cikm23-material

[=]

ClustPy Package -

* Link: https://github.com/collinleiber/ClustPy

[] ey

* > 20 recently introduced (deep) clustering algorithms implemented in
sklearn style = Easy to use and apply

* > 70 benchmarking data sets (e.g., UCI, UCR, Torchvision,
Medical MNIST)

* Many performance metrics and visualization methods

£\
ClustPy/J

https://github.com/collinleiber/ClustPy

Outline

[* Introduction to Clustering

* Introduction to Deep Clustering
* Application of Deep Clustering Algorithms
* Recent Approaches

e Qutlook

|II

Clustering — Find a “meaningfu

i s |
E‘k . “‘
' 4 y y I
F ¥

grouping

e

Recap: K-Means

[0.2 0.4 0.6 0.8 L
®

1. random initialization 2. assignment of objects 3. update of the centers 4. iteration of (2) and
of the K cluster centers to the closest center (3) until convergence

+ fast convergence,
+ well-defined objective function,
+ based on statistical model.

Recap: K-Means

Algorithm k-Means
Input Parameter: Number K of clusters;
Randomly initialize the K cluster centers p, ... p
Iterate the following steps until convergence:
Assign each object X; to the nearest centroid

Update the cluster centroids p = (py ... 1)

Objective function:
1 2
L(p; x) = Z L(w; x;) = ZE (x; — d;i (W)
i i

Where the function j := d; () assigns the it" point x; to its closest centroid Uj

SGD-K-Means

e Stochastic Gradient Descent Version of K-Means [BB94]

* Learned parameters for K-Means are the centroids uj,j € {0,1,...,K}
* Runs several times (epochs) over the full data set in randomized order

1
L(w;) = (xi = i)’

SGD-K-Means

e Stochastic Gradient Descent Version of K-Means [BB94]

* Learned parameters for K-Means are the centroids uj,j € {0,1,...,K}
* Runs several times (epochs) over the full data set in randomized order

1 2
L(u; x;) = E(xi —d; ()
* The gradient update for the loss function w.r.t. u

. OL(u;x;) _ a - (Xi — ,u]), lf_] = dl(‘ll)
ou 0, otherwise
* Each point x; moves its respective center p; closer to x; by Au

* Optimal learning rate a = 1/nj where n;is number of objects in cluster |

SGD-K-Means converges much faster

°q
NI e The random initialization may go wrong

* C(Classical K-Means would base a complete round
of assignment on the resulting boundary

11

SGD-K-Means converges much faster

The random initialization may go wrong

Classical K-Means would base a complete round
of assignment on the resulting boundary

After having seen e.g. 10 points, the centers are
already much better with SGD-K-Means

SGD-K-Means continuously improves centers

12

SGD-K-Means converges much faster

1
N R O R, N W DM~ !,

oy

— J—

(Number of Points Seen)

10

20

30

40 50 60

13

Minibatch-K-Means

Algorithm Minibatch-K-Means [S10]
Input Parameter: Number K of clusters;
Randomly initialize the K cluster centers p, ... 1,
Iterate the following steps until convergence:
Select a Minibatch M;
Update centroids p, ... p,for each x; in M:

oLz _ e (o —py), i) = di(W)

Ap = —
& ou 0, otherwise

Further improvements, e.g. in [PB10, APB13]:
* Consider additional update of center u whenever the cluster loses a point X;

* Consider occupation of network/bus when parallel processes exchange
information of centers p, ... u

Outline

* Introduction to Clustering

* Introduction to Deep Clustering

* Application of Deep Clustering Algorithms
* Recent Approaches

e Qutlook

15

The Curse of Dimensionality in Clustering

o @
&8 & 00
OOQ o
* (Seseeleree) \..q’ 030
® 0
so ® ® 7,
& \ X
o) o)
O O O
O O O O
o) O
* Full-dimensional . Subspace clusters e Arbitrarily shaped subspace clusters,
e Gaussian clusters P » of different density,

) .) e and outliers.) .
* without outliers or noise. * noise and outliers.

16

Deep Representation Learning

 Successful for image, text, video, audio ...
e Structured data
* High data volume

* Automated feature extraction (Representation Learning)
* Feature engineering requires domain knowledge

* Easy to parallelize
* GPU friendly
* Works on large amount of data

Prerequisite: Autoencoder

* Learning is done via self-supervision — requires no labels
* The prediction (output) is a reconstruction of the input data
* Goal: Low dimensional representation (embedding) of input data

XNxD ZNxd XNxD
Decoder

Prerequisite: Autoencoder

* Learning is done via self-supervision — requires no labels
* The prediction (output) is a reconstruction of the input data
* Goal: Low dimensional representation (embedding) of input data

0 O 0 0

| 1\

X8><784 X8><784
Decoder

Autoencoder — Loss Function

* Compares the reconstruction X with the input x
e Quantifies the reconstruction loss which we want to minimize
 Common choices: Cross Entropy, Sum of Squared Differences

RELLEEETE) L(Q;X)zzllfi_xi”%(.............. E

XnxD ZNxd XnxD

— — Decoder | =™

Sequential Deep Clustering Approach

1) Use an autoencoder to learn a non-linear embedding of your data
i.e., Feature learning/Representation learning

0 O 0 0

| 1\

X8><784 X8><784
Decoder

Sequential Deep Clustering Approach

1) Use an autoencoder to learn a non-linear embedding of your data
i.e., Feature learning/Representation learning

2) Cluster that data with some algorithm of your choice

0 O 0 0

S

X8><784 X8><784
Decoder

Sequential Deep Clustering Approach

1) Use an autoencoder to learn a non-linear embedding of your data
i.e., Feature learning/Representation learning

2) Cluster that data with some algorithm of your choice

Note: This is not necessarily a bad idea and often useful, but it might
limit our solution -> We are stuck to the initial representation

Notebook Example

* Clustering of Autoencoder embedded space

24

Can we do better?

Yes! — Learn A Cluster Friendly Representation

&@0 Option A:
Seosoeierte® Correlation and
& outlier preserving

Initial _
O representation

representation

o
@ 0o o0@P°® 8 o0 ot Deep O \

‘a."‘ ° Clustering 0 0
® o

° LA T Option B:
¢ Y k-Means friendly
representation

Deep Clustering - Overview

* |dea: Include the notion of clustering already during the autoencoder
training

e Goal: We want to find all relevant cluster structure and improve it!
Problems:
* We need to specify a cluster model (inherit assumptions)

* We face circular dependency problem

* In order to learn a good representation we need to know what clusters we
have

* In order to learn a good clustering we need to have already a good
representation

* Deep Learning is not a magic bullet that solves this problem

Deep Clustering — Toy Example

* Problems: We still face circular dependency problem

* In order to learn a good representation we need to know what clusters we
have

* In order to learn a good clustering we need to have already a good
representation

* Here: Clusters are ripped apart

Initial Representation K-Means Clustering Optimized Representation

‘ ®

o N

164
°0 o°
o
° e
o Moy

28

Deep Clustering - Approaches

 Alternating optimization

* Alternate between optimizing the representation and updating the clustering
assignments

* Joint optimization
* Cluster assignments and representation are updated together

Deep Clustering - Approaches

* Alternating optimization
» Alternate between optimizing the representation and updating the clustering assignments
* Joint optimization

e Cluster assignments and representation are updated together

* Overall Goal: Learn a cluster friendly embedding
* Cluster friendly = Enhanced separation of clusters, Cluster structure is more distinct
* Increase inter-cluster distance and decrease intra-cluster distance

* Include structural constraints to avoid the “destruction” of structure, i.e. ripped apart
clusters

Outline

* Introduction to Clustering

* Introduction to Deep Clustering

* Application of Deep Clustering Algorithms

* Recent Approaches

e Qutlook

31

Alternating Optimization

1) Pretrain an autoencoder to learn a non-linear embedding of your
data

a) Setthe dimensionality to min(k, # features) . This “upper bound” avoids
losing too much information. For a motivation of this rule of thumb see e.g.
the connections of K-means and PCA [DHO04]

2) Initialize clustering with some algorithm (e.g. K-means)

Toy Example — 1 Iteration

® we _ohfoo

Pretrain
Autoencoder

-

Update
representation

-

“move points
closer to their
centroids”

o o
o© ®o o %é’oo

33

Alternating Optimization

1) Pretrain an autoencoder to learn a non-linear embedding of your
data

a) Setthe dimensionality to min(k, # features) . This “upper bound” avoids
losing too much information. For a motivation of this rule of thumb see e.g.
the connections of K-means and PCA [DHO04]

2) Initialize clustering with some algorithm (e.g. K-means)

While cluster labels change:

a) Fix centroids and update the autoencoder parameters
- Move points closer to their centroids

b) Fix autoencoder parameters and update centroids and assignments

DCN-Deep Clustering Networks

* Deep Clustering Network (DCN) [YFSH17]
e Based on Mini-Batch K-means [S10]
* Centroids are not optimized via SGD, but are updated explicitly
* They use hard cluster assignments which are not differentiable

DCN-Deep Clustering Networks

* Deep Clustering Network (DCN) [YFSH17]
e Based on Mini-Batch K-means [S10]
* Centroids are not optimized via SGD, but are updated explicitly
* They use hard cluster assignments which are not differentiable

 Alternating optimization between clustering and autoencoder
* Because the calculation of cluster assignments is non-differentiable

* Alternate between
1) K-Means Step
1) Assignments
2) Centroid updates
2) Autoencoder Step

Preserve Global structure via Reconstruction and make clusters more “K-Means friendly”
[YFSH17] by “moving” points closer to their centroids

DCN-Deep Clustering Networks

* Deep Clustering Network (DCN) [YFSH17]

* Alternating optimization between clustering and autoencoder

e Alternate between
1) K-Means Step
2) Autoencoder Step (Reconstruction + Compression)

Overall Loss Function [= Al + [
Compression loss: 1. = ||z; — u;||5
Reconstruction loss: I, = ||%; — x;|5
where A is a hyperparameter weighing the importance of cluster structure

Notebook Example

* Deep clustering with DCN

38

Joint Optimization

1) Pretrain an autoencoder to learn a non-linear embedding of your
data

a) Setthe dimensionality to min(k, # features) .

2) Initialize clustering with some algorithm (here K-means)

Joint Optimization

1) Pretrain an autoencoder to learn a non-linear embedding of your
data

a) Setthe dimensionality to min(k, # features) .

2) Initialize clustering with some algorithm (here K-means)

3) While cluster labels change

Jointly optimize the clustering parameters (update centroids and assignments),
together with the autoencoder

Joint Optimization

1) Pretrain an autoencoder to learn a non-linear embedding of your
data

a) Setthe dimensionality to min(k, # features) .
2) Initialize clustering with some algorithm (here K-means)

3) While cluster labels change

Jointly optimize the clustering parameters (update centroids and assignments),
together with the autoencoder

e Cluster procedure need to be differentiable
* Assignments need to be soft e.g. assignment probabilities
* Usually faster, because we can completely parallelize the procedure

DKM -Deep k-Means

* Deep k-Means (DKM) [FTG19]

* Truly joint learning of the representation and the k-Means clustering
parameters

* Builds directly on the k-Means loss:

Z |z —c(z, M)||5, where c(z, M) = argmin||z — ull;
reX peEM

=> For Deep Clustering: Y Lrce(w) + Alenc(x) — c(enc(x), M)|[3
reX \ ! J

f
* Problem: f must be continuously differentiable!

DKM -Deep k-Means

* We need a function Gi(x,a, M) =

e This would lead to: "

L= Lyelz)+ AZ |lenc(z

reX

{1 if i, = c(enc(c), M)

0 otherwise

— | 5Gr(x, o, M)

43

DKM -Deep k-Means

* We need a function Gi(x,a, M) =

{1 if . = c(enc(c), M)

0 otherwise

* This would lead to: "

L = Zﬁm +)\Z||en(— 1| [5G (x, o, M)

reX

* Use a parameterized softmax function

JNearnef Y — 2
6—1’}.||{JI1(,(“1‘.-) L3

(x, a0, M) =
Gk(}(, X,) L’}ﬂ ,—a||enc(z)—pupr | |2
* Formulation is fully differentiable regarding the parameters of the

autoencoder and the cluster centers M

44

DKM -Deep k-Means

M| e lenc(x)—pr||3
2
- L= Z Lrec(®) + A Z lenc(x) — sl (M| 15 |enc(z)—pupr ||
reX k ko € Hiil

* For a close to O all centroids are equally weighted, for very large a it
simulates hard cluster assignments

* How to choose a good value for a?

1. Possibility

- Pretrain the autoencoder

- Start clustering process with a large a (e.g., 1000)
2. Possibility

- Do not use pretraining

- Use an annealing strategy for a.
Start with small values and increase a after a certain amount of epochs

Notebook Example

* Deep clustering with DKM

Ground Truth Centers - Image Space

46

Coffee Break

Welcome back. Any questions?

DEC - Deep Embedded Clustering

* Deep Embedded Clustering (DEC) [XGF16]

* Based on SGD-K-means with a student t-kernel for measuring the distance of
an embedded data point z; to centroid y; in relation to its distance to all
other centroids u;, except u;:

~1
(1+ 11z — ujl13) B distance to y;

Qij = ~ summed distance to all other centroids

3, (1+ 11z = l12)

* q; ; are soft assignments of the i*" data point to the j" cluster
centroid

DEC - Deep Embedded Clustering

* Qnxk is the matrix of soft assignments q; ; of N data points to the K
centroids

* Achieved by measuring the distance with the Student’s t-kernel between all
embedded points z; and centroids u;.

DEC - Deep Embedded Clustering

* Qnxk is the matrix of soft assignments q; ; of N data points to the K
centroids

* Achieved by measuring the distance with the Student’s t-kernel between all
embedded points z; and centroids u;.

* Target distribution Py«
[XGF16] define the following desirable properties for the target distribution P:
 strengthen predictions on data points assigned with high confidence
* normalize loss contribution for each centroid

a7

i
J

Pij = 72
L

I

J' 7

DEC - Deep Embedded Clustering

* Qnxk is the matrix of soft assignments q; ; of N data points to the K

centroids
* Achieved by measuring the distance with the Student’s t-kernel between all
embedded points z; and centroids u;.

* Target distribution Py«
[XGF16] define the following desirable properties for the target distribution P:

 strengthen predictions on data points assigned with high confidence
* normalize loss contribution for each centroid

. ql-z’j strengthens high confidence predictions
—> Assignments close to one will be kept higher than _— 7
i.j — 2

undecided ones that are close to 0.5

DEC - Deep Embedded Clustering

* Qnxk is the matrix of soft assignments q; ; of N data points to the K

centroids
* Achieved by measuring the distance with the Student’s t-kernel between all
embedded points z; and centroids u;.

* Target distribution Py«
[XGF16] define the following desirable properties for the target distribution P:
 strengthen predictions on data points assigned with high confidence
* normalize loss contribution for each centroid

. ql-zj strengthens high confidence predictions

f;"f__j

‘|fi = =) q;,j (soft) frequency per cluster -
i.j — 2
—> Dividing byIf] renormalizes by cluster size to o r}J

avoid that large clusters distort the embedding

DEC - Deep Embedded Clustering

* Minimize the KL divergence between the target distribution P and the
cluster assignment Matrix Q:

Pi,;j
| =1, = KL(P||Q) = Z Z Pz]log(ql)

* Measures how closely the assignment matrlx () matches the target
distribution P

DEC - Deep Embedded Clustering

* Minimize the KL divergence between the target distribution P and the
cluster assignment Matrix Q:

e - Pi,;j
| =1, = KL(P||Q) = Z Z Pz]log(ql)

* Measures how closely the assignment matrlx () matches the target
distribution P

* Overall Intuition — Increase separation of clusters by moving
embedded points closer to their centroids u; and repelling points
from other centroids u;,j # i.

* Note that DEC does not use the reconstruction loss [during the joint
optimization process

Notebook Example

e Deep clustering with DEC

56

IDEC-Improved Deep Embedded Clustering

* [GGLY17] proposed to keep the reconstruction loss during joint optimization with DEC to avoid such
distorted solutions

* Their approach IDEC uses during the joint optimization both losses

Overall loss function [= lR +)llc
Compression loss: lC = KL (Pl |Q)

Reconstruction loss: lR — | |5C\l — xi | |%

IDEC-Improved Deep Embedded Clustering

* [GGLY17] proposed to keep the reconstruction loss during joint optimization with DEC to avoid such

distorted solutions

* Their approach IDEC uses during the joint optimization both losses

Overall loss function [= [z + Al,

Compression loss:

lc = KL(P||Q)

Reconstruction loss: [= ||x; — xl-||%

e This alleviates to some degree the previous problem, but depends heavily on the hard to tune weighting

hyperparameter /1

* Introduces a new problem called Feature Drift [MMKK19]
* The reconstruction loss and the clustering loss have conflicting goals
* Reconstruction Loss: Preserve the space as best as possible to reconstruct all features

* Compression Loss:

of the data

Increase the separation of the clusters and only focus on the
most discriminative features

Notebook Example

e Deep clustering with IDEC

Results

* Notebook summary
 What worked?

* What could be improved?

Results

* Notebook summary
 What worked?

* What could be improved? --> Augmentation

Motivation - Augmentation

* Invariant representation learned by the autoencoder
* Autoencoder learns to ignore certain patterns, i.e., rotations, noise, shifts,...

* [nvariances inside a cluster

* Cluster membership should not change due to spurious patterns i.e., slight
rotations, lighting conditions, noise, shifts,...

* Include domain knowledge in the form of augmentation

* E.g., we know that slight rotations of digits do not change the label assigned
to them.

e Strong rotations might flip the label, e.g., digits 6 and 9

Domain Knowledge and Invariances

* Cluster membership should not change due to spurious patterns i.e.
slight rotations (Invariances inside clusters)

« x4 := aug(x) where aug(-) are different augmentations that we add
to the original data point x.

« z4 = enc(aug(x)), £4 = dec(z?)

Domain Knowledge and Invariances

* Cluster membership should not change due to spurious patterns i.e.
slight rotations (Invariances inside clusters)

« x4 := aug(x) where aug(-) are different augmentations that we add

to the original data point x.
« z4 = enc(aug(x)), £4 = dec(z?)

XNXD

ZN d
—2 | Encoder % Decoder | ™

Domain Knowledge and Invariances

* Cluster membership should not change due to spurious patterns i.e.
slight rotations (Invariances inside clusters)

« x4 := aug(x) where aug(-) are different augmentations that we add
to the original data point x.

« z4 = enc(aug(x)), £4 = dec(z?)

Xnxp Zyyd X nxp
—_— B % Decoder >

X%xD Z5 4 X4 nup
—> | Encoder . Decoder | ™

Domain Knowledge and Invariances

* Cluster membership should not change due to spurious patterns i.e.
slight rotations (Invariances inside clusters)

« x4 := aug(x) where aug(-) are different augmentations that we add
to the original data point x.

« z4 = enc(aug(x)), £4 = dec(z?)

* New loss function [= [£ + 14

A _ 2 A
lAc = ||Zi—.ui||%+||ZiA—Hi|
g = |lx; — x|z + ||Xi —x

Domain Knowledge and Invariances

* Cluster membership should not change due to spurious patterns i.e.
slight rotations (Invariances inside clusters)

e x4 := aug(x) where aug(-) are different augmentations that we add
to the original data point x.
- z4 == enc(aug(x)), 24 = dec(z?)

* New loss function [= [& + 1§ > = <oy

¢ = IIZL jllz + IIZ EII%

A _
g = 118 — 2|13 + 112 — 2713

* We use the cluster assignments and centroids learned from our
“clean” examples

* Thus we force the augmented data points to be in the same cluster as
their originals

Notebook Example

Outline

* Introduction to Clustering
* Introduction to Deep Clustering

* Application of Deep Clustering Algorithms

* Recent Approaches

e Qutlook

69

Specialized Deep Clustering Algorithms

* Flat & Centroid based approaches * Probabilistic Methods

 DEC [XGF16] e ClusterGAN [MALK19]
* |IDEC [GGLY17] e VADE [JYTTZ17]
* DCN [YFSH17] e Other Approaches
* ACe/DeC [MBMTBP21] * Hierarchical Clustering
e Spectral Clustering * DeepECT [MPB19]
e SpectralNet [SSLBNK18] * Non-Redundant Clustering:
* DualAE [YDZYL19] * ENRC [MMABP20]

. - * Subspace Clustering
Mutual Information . DSC [JZLSR17]

e IMSAT [HMTMS17] e K-estimation
e |IC[JHV19] DipDECK [LBSBP21]

* Density based
 DDC [LCCC18]

Deep Non-Redundant Clustering

* Embedded Non-Redundant Clustering algorithm (ENRC) [MMABP20]

Material Clustering

Shape Clustering

Non-redundant clusterings:

e Shapes : Cube, Cylinder, Sphere

* Colors: Red, Blue, Green,
Yellow Purple, Grey

* Material: Rubber, Metal

How to find all three clusterings with
unsupervised deep learning?

- Non-redundant clustering layer:
Softly split the embedded space with
learnable feature weights

Clustering,

T | Clustering
Encoder L) i 2 —V> Decoder

Clusterings

Non—reldundant

-1.0
-0.8

0.6
0.4
0.2
0.0

color

material

shape

Bo Br B: Bs Ba Bs Bs Br Bs Bs Buw Bu Bz Brs Bu Brs

71

Deep Non-Redundant Clustering

Color Feature Space Material Feature Space Shape Feature Space

N

color

material

shape

Bo B1 B2 Bz Ba Bs Bs Bz Bs Bas Bio Bi1 P12z Biz Pia Bis

Deep Hierarchical Clustering

* Deep Embedded Cluster Tree (DeepECT) [MPB19]

Based on Bisecting Kmeans model
Recursively split embedded space in with k = 2
Uses projected cluster loss

Preserve structure along orthogonal
dimensions spanned by the two centroids

Example:
Original Naive Approach

M

Projected Loss

Reconstruction

73

Deep Hierarchical Clustering

* Deep Embedded Cluster Tree (DeepECT) [MPB19]

* Based on Bisecting Kmeans model Y —
* Recursively split embedded space in with k = 2 g —>| “space . | —>| Decoder [—»
* Uses projected cluster loss }

* Preserve structure along orthogonal
dimensions spanned by the two centroids

Reconstruction

Example:
Original Naive Approach Projected Loss

M

C1€— %4]

Restrict movement
o ‘ along the line spanned
by the two centroids

Deep Hierarchical Clustering

heeled ar
ankle boots

L upper body clothes sneakers sandals
nao visible heeled or & flipflops
ankle boots

ankle boots

small shoulder trousers dresses T-shirts dark bright high-heeled high-heeled flat sole heeled
handle straps & shirts colors colors hoots sandals

Fig. 2. The diagram shows a cluster tree for the Fashion-MNIST dataset. Each leaf node shows randomly sampled objects assigned to it. The labels are
interpretations by the authors, The colored areas highlight the three dominant sub-trees representing three types of objects found in the datasei: bags, clothes,
and shoes.

Deep Hierarchical Clustering

Finding populations and sub-populations and hierarchical structures e.g.

different types of 7’s and 2’s

Deep Clustering with k-estimation

* Dip-based Deep Embedded Clustering with k-estimation (DipDECK)
[LBSBP21]

* Problem: 'True' number of clusters is often unknown

* |dea: Overestimate the number of clusters and identify similar micro-

clusters

* Use Dip-test of unimodality to
rate similarity

* Micro-Clusters describing a
common structure should be
placed close to each other
-> If similarity is high enough, _
they can be merged e & O

dip = 0.127
6) p-val = 0.00

Deep Clustering with k-estimation

a

e

%
£

. TR .

d!d .--{i .
- ‘*‘g . o,
&

»

L ‘
? | L X

- | | :
&2 -

(a) Synthetic data set
with 4 ground truth
clusters.

(f) After (2) more merges

(c) Trainuntil p > T

g

&

: |

(g) Training until p > T

(d) After first (14) merges (e) Training until p > T

- .

(i) Final result
78

(h) After (5) more merges

Outline

* Introduction to Clustering
* Introduction to Deep Clustering
* Application of Deep Clustering Algorithms

* Recent Approaches

[e Outlook

79

Discussion

* Pros:
* Finds clusters which are non-linearly hidden in the original space
e Can find higher “semantic” clusters e.g. digits, traffic signs, ...

* No need for feature engineering, “only” need to choose an architecture which
fits the data type, e.g. convolutional neural nets for image data.

e Fast inference for clustering unseen data from the same (unknown)
distribution

e Centroids and interpolations in the embedded space can be reconstructed
and visualized in the original space.

 Domain knowledge can be incorporated as data invariances
* Scales to large amounts of data and dimensions

Discussion

* Cons:
* Only useful for larger quantities of data
* Works mostly on structured data, e.g., images, sound, text, ...
 Embedded space is hard to interpret (black box optimization)

 Many hyperparameters (number of clusters, learning rate, batch size,
architecture, ...)

* Highly dependent on a good initialization (local optima)

* Sensitive to noise and outliers

* Research until now is mostly empirical, no strong theoretical guarantees
* High runtime in comparison to “classical” clustering methods

* Need for specialized hardware (e.g., CUDA enabled GPUs, TPUs, ...)

In Summary

e Representation learning for clustering (Deep Clustering) is an active
research area (about 10 years of research)

* Many interesting algorithms have been proposed transferring
“classical” clustering algorithms to the deep learning framework
(similar to kernel approaches)

* Many problems of deep learning (e.g., high number of
hyperparameters), which can be “easily” tackled in supervised
learning are difficult to solve in deep unsupervised learning

Question for the Audience

* Aside from clustering, in which cases are clustered representations useful?

Question for the Audience

* Aside from clustering, in which cases are clustered representations useful?

* Some thoughts:

* In cases where abstraction is of interest, e.g., preserving only prototypical information
e Simplified representation
* Representations with less nuisance factors
* In cases where we want to enforce cluster structure in the representation
* Information retrieval
* Task acquisition in meta-reinforcement learning [JHGELF19]
* Other cases?

* In which might they be less useful?
* Fine grained classification tasks
* Generative tasks?

Open Problems in Deep Clustering

* Imbalanced clusters
e Adversarial Examples
* Fairness & Explainable Al

* Dependence on hyperparameters

Imbalanced Clusters, Noise, Outliers

»
)
|
%
)
i
!
Imbalanced clusters of different scales [DMPB22]. Massive amounts of noise points (80%) [MP16].

86

Adversarial Examples

Original

pre-attack
cluster

Adversarial

o
.
k

post-attack i : \ i gY .
cluster ship ship plane dog bird dog bird bird

Slight modifications of the training images learned by a GAN can fool deep clustering methods [CSM22].

87

Fairness

Clusters

b ™
X

0 epoch (NMI=14.2) 25 epoch (NMI=79.3) 50 epoch (NMI=83.5)

0 epoch (MNCE=18.9) 25 epoch (MNCE=89.0) 50 epoch (MNCE=91.6)

Challenges: Protected attribute: O\ L3 NI 67 % 9
Single user-specified Data source o
protected attribute, [ZLHPLP23] O ' 2_’ Y56 &

Weighting between
fairness and quality.

Considering the evolution of clustering methods

High-dimensional
data

Interpretability

Runtime

Parameterization

Traditional
algorithms, e.g. K-
means (1950 and
older)

SR

b

Subspace and
spectral methods,
e.g., NR-K-means
[MYPB17]
(starting in the
1990ies)

-

o

Deep clustering
methods, e.g.,
ENRC [MMABP20]
(popular since
2010)

+++

20

..hybrid methods might be the future.

High-dimensional Interpretability Runtime Parameterization
data

Traditional --- +++ +++ -

clustering

algorithms

Subspace and + -+ ++ -

spectral methods

Deep clustering +++ + - o

methods

Hybrid methods

+++ expressiveness
where needed?

++ interpretable
where possible?

+ spend effort
where needed?

-- partly automatic?

20

g7 wniversitat
J wien

Contact

LLLLLLL

f e,

15730 e A

S)

‘ O 2
MAXIMILIANS- \ - 0N &

LIVIu UNIVERSITAT | \ AV =
MUNCHEN N | %
N

e Collin Leiber: leiber@dbs.ifi.Imu.de
e Lukas Miklautz: lukas.miklautz@univie.ac.at

e Claudia Plant: claudia.plant@univie.ac.at

e Christian Bohm: christian.boehm@univie.ac.at

Y
£\ @]

Check out CIUSth at
[=] 3

=

91

mailto:leiber@dbs.ifi.lmu.de
mailto:lukas.miklautz@univie.ac.at
mailto:claudia.plant@univie.ac.at
mailto:christian.boehm@univie.ac.at

References

[AGSC18]

[APB13]

[BCV13]

[BB94]

[CLX16]

[CSM22]

[DHO4]

[DMPB22]

[FTG19]

[GBC16]

[GGLY17]

[HPGAC18]

[JHGELF19]

Elie Aljalbout, Vladimir Golkov, Yawar Siddiqui, Daniel Cremers:

Clustering with Deep Learning: Taxonomy and New Methods. CoRR abs/1801.07648 (2018)
Muzaffer Can Altinigneli, Claudia Plant, Christian Bohm:

Massively parallel expectation maximization using graphics processing units. KDD 2013: 838-846
Yoshua Bengio, Aaron C. Courville, Pascal Vincent:

Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8): 1798-1828 (2013)
Léon Bottou, Yoshua Bengio:

Convergence Properties of the K-Means Algorithms. NIPS 1994: 585-592

Shaosheng Cao, Wei Lu, Qiongkai Xu:

Deep Neural Networks for Learning Graph Representations. AAAI 2016: 1145-1152

Anshuman Chhabra, Ashwin Sekari, Prasant Mohapatra:

On the robustness of Deep Clustering Models. Adversarial Attacks and Defenses. NeurlPS2022
Chris H. Q. Ding, Xiaofeng He:

K-means clustering via principal component analysis. ICML 2004

Walid Durani, Dominik Mautz, Claudia Plant, Christian B6hm:

DBHD: Density-based clustering for highly varying density. ICDM 2022: 921-926

Maziar Moradi Fard, Thibaut Thonet, and Eric Gaussier

Deep k-means: Jointly clustering with k-means and learning representations. Pattern Recognition Letters
lan Goodfellow and Yoshua Bengio and Aaron Courville:

Deep Learning. MIT Press, 2016

Xifeng Guo, Long Gao, Xinwang Liu, Jianping Yin:

Improved Deep Embedded Clustering with Local Structure Preservation. 1JCAlI 2017: 1753-1759
Philip Hausser, Johannes Plapp, Vladimir Golkov, Elie Aljalbout, Daniel Cremers:

Associative Deep Clustering: Training a Classification Network with No Labels. GCPR 2018: 18-32
Allan Jabri, Kyle Hsu, Abhishek Gupta, Ben Eysenbach, Sergey Levine, Chelsea Finn:

Unsupervised Curricula for Visual Meta-Reinforcement Learning. NeurlPS 2019: 10519-10530

92

References

[JHV19]

[JZLSR17]

[LBSBP21]

[MSFK18)

[MZLC19]

[MPB19]

[MBMTBP21]

[MMABP20]

[MMKK19]

[MYPB18]

[MP16]

[MALK19]

[PB10]

Xu Ji, Jodo F. Henriques, Andrea Vedaldi:

Invariant Information Distillation for Unsupervised Image Segmentation and Clustering. ICCV 2019: forthcoming
Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann, lan D. Reid:

Deep Subspace Clustering Networks. NIPS 2017: 24-33

Collin Leiber, Lena Bauer, Benjamin Schelling, Claudia Plant, Christian Bohm

Dip-based deep embedded clustering with k-estimation. KDD 2021: 903-913

Naveen Sai Madiraju, Seid M. Sadat, Dimitry Fisher, Homa Karimabadi

Deep Temporal Clustering : Fully Unsupervised Learning of Time-Domain Features. CoRR abs/1802.01059 (2018): unpublished
Qianli Ma, Jiawei Zheng, Sen Li, Gary W. Cottrell:

Learning Representations for Time Series Clustering. NeurlPS 2019: 3776-3786

Dominik Mautz, Claudia Plant and Christian Bohm:

Deep Embedded Cluster Tree. ICDM 2019: forthcoming

Lukas Miklautz, Lena Bauer, Dominik Mautz, Sebastian Tschiatschek, Christian Bohm and Claudia Plant:
Details (Don’t) Matter: Isolating Cluster Information in Deep Embedded Spaces. 1JCAI 2021: 2826-2832
Lukas Miklautz, Dominik Mautz, Muzaffer Can Altinigneli, Christian B6hm and Claudia Plant:

Deep Embedded Non-Redundant Clustering. AAAI 2020: 5174-5181

Nairouz Mrabah, Naimul Mefraz Khan, Riadh Ksantini:

Deep Clustering with a Dynamic Autoencoder. CoRR abs/1901.07752 (2019): unpublished

Dominik Mautz, Wei Ye, Claudia Plant, Christian Bohm:

Towards an Optimal Subspace for K-Means. KDD 2017: 365-373

Samuel Maurus, Claudia Plant:

Skinny-dip: Clustering in a Sea of Noise. KDD 2016: 1055-1064

Sudipto Mukherjee, Himanshu Asnani, Eugene Lin, Sreeram Kannan:

ClusterGAN: Latent Space Clustering in Generative Adversarial Networks. AAAI 2019: 4610-4617
Claudia Plant, Christian Bohm:

Parallel EM-Clustering: Fast Convergence by Asynchronous Model Updates. ICDM Workshops 2010: 178-185

93

References

[S10]

[SSLBNK18]

[TNSZ19]

[VLLBM10]

[HMTMS17]

[XGF16]

[YDZYL19]

[YFSH17]

[YTTZ17]

[ZLHPLP23]

D. Sculley:

Web-scale k-means clustering. WWW 2010: 1177-1178

Uri Shaham, Kelly P. Stanton, Henry Li, Ronen Basri, Boaz Nadler, Yuval Kluger:

SpectralNet: Spectral Clustering using Deep Neural Networks. ICLR 2018

Panagiotis Tzirakis, Mihalis A. Nicolaou, Bjorn W. Schuller, Stefanos Zafeiriou:

Time-series Clustering with Jointly Learning Deep Representations, Clusters and Temporal Boundaries. FG 2019: 1-5
Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol:

Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 11: 3371-3408 (2010)
Weihua Hu, Takeru Miyato, Seiya Tokui, Eiichi Matsumoto, Masashi Sugiyama:

Learning Discrete Representations via Information Maximizing Self-Augmented Training. ICML 2017: 1558-1567
Junyuan Xie, Ross B. Girshick, Ali Farhadi:

Unsupervised Deep Embedding for Clustering Analysis. ICML 2016: 478-487

Xu Yang, Cheng Deng, Feng Zheng, Junchi Yan, Wei Liu:

Deep Spectral Clustering Using Dual Autoencoder Network. CVPR 2019: 4066-4075

Bo Yang, Xiao Fu, Nicholas D. Sidiropoulos, Mingyi Hong:

Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering. ICML 2017: 3861-3870

Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, Hanning Zhou:

Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering. 1JCAl 2017: 1965-1972

Pengxin Zeng, Yunfan Li, Peng Hu, Dezhong Peng, Jiancheng Lv, Xi Peng

Deep Fair Clustering via Maximizing and Minimizing Mutual Information: Theory Algorithm and Metric. CVPR 2023: 23986-23995

94

	Folie 1: Tutorial: Application of Deep Clustering Algorithms
	Folie 2: Presenters
	Folie 3: Hands-On
	Folie 4: ClustPy Package
	Folie 5: Outline
	Folie 6: Clustering – Find a “meaningful” grouping
	Folie 7: Recap: K-Means
	Folie 8: Recap: K-Means
	Folie 9: SGD-K-Means
	Folie 10: SGD-K-Means
	Folie 11: SGD-K-Means converges much faster
	Folie 12: SGD-K-Means converges much faster
	Folie 13: SGD-K-Means converges much faster
	Folie 14: Minibatch-K-Means
	Folie 15: Outline
	Folie 16: The Curse of Dimensionality in Clustering
	Folie 17: Deep Representation Learning
	Folie 18: Prerequisite: Autoencoder
	Folie 19: Prerequisite: Autoencoder
	Folie 20: Autoencoder – Loss Function
	Folie 21: Sequential Deep Clustering Approach
	Folie 22: Sequential Deep Clustering Approach
	Folie 23: Sequential Deep Clustering Approach
	Folie 24: Notebook Example
	Folie 25: Can we do better?
	Folie 26
	Folie 27: Deep Clustering - Overview
	Folie 28: Deep Clustering – Toy Example
	Folie 29: Deep Clustering - Approaches
	Folie 30: Deep Clustering - Approaches
	Folie 31: Outline
	Folie 32: Alternating Optimization
	Folie 33: Toy Example – 1 Iteration
	Folie 34: Alternating Optimization
	Folie 35: DCN-Deep Clustering Networks
	Folie 36: DCN-Deep Clustering Networks
	Folie 37: DCN-Deep Clustering Networks
	Folie 38: Notebook Example
	Folie 39: Joint Optimization
	Folie 40: Joint Optimization
	Folie 41: Joint Optimization
	Folie 42: DKM -Deep k-Means
	Folie 43: DKM -Deep k-Means
	Folie 44: DKM -Deep k-Means
	Folie 45: DKM -Deep k-Means
	Folie 46: Notebook Example
	Folie 47: Coffee Break
	Folie 48: Welcome back. Any questions?
	Folie 49: DEC - Deep Embedded Clustering
	Folie 50: DEC - Deep Embedded Clustering
	Folie 51: DEC - Deep Embedded Clustering
	Folie 52: DEC - Deep Embedded Clustering
	Folie 53: DEC - Deep Embedded Clustering
	Folie 54: DEC - Deep Embedded Clustering
	Folie 55: DEC - Deep Embedded Clustering
	Folie 56: Notebook Example
	Folie 57: IDEC-Improved Deep Embedded Clustering
	Folie 58: IDEC-Improved Deep Embedded Clustering
	Folie 59: Notebook Example
	Folie 60: Results
	Folie 61: Results
	Folie 62: Motivation - Augmentation
	Folie 63: Domain Knowledge and Invariances
	Folie 64: Domain Knowledge and Invariances
	Folie 65: Domain Knowledge and Invariances
	Folie 66: Domain Knowledge and Invariances
	Folie 67: Domain Knowledge and Invariances
	Folie 68: Notebook Example
	Folie 69: Outline
	Folie 70: Specialized Deep Clustering Algorithms
	Folie 71: Deep Non-Redundant Clustering
	Folie 72: Deep Non-Redundant Clustering
	Folie 73: Deep Hierarchical Clustering
	Folie 74: Deep Hierarchical Clustering
	Folie 75: Deep Hierarchical Clustering
	Folie 76: Deep Hierarchical Clustering
	Folie 77: Deep Clustering with k-estimation
	Folie 78: Deep Clustering with k-estimation
	Folie 79: Outline
	Folie 80: Discussion
	Folie 81: Discussion
	Folie 82: In Summary
	Folie 83: Question for the Audience
	Folie 84: Question for the Audience
	Folie 85: Open Problems in Deep Clustering
	Folie 86: Imbalanced Clusters, Noise, Outliers
	Folie 87: Adversarial Examples
	Folie 88: Fairness
	Folie 89: Considering the evolution of clustering methods
	Folie 90: …hybrid methods might be the future.
	Folie 91: Contact
	Folie 92: References
	Folie 93: References
	Folie 94: References

