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Hands-On

• Prepared jupyter notebook with examples

• Implemented in PyTorch and ClustPy

• Collab link for jupyter notebook: https://tinyurl.com/cikm23-clustpy

• Download link for material: https://tinyurl.com/cikm23-material
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ClustPy Package

• Link: https://github.com/collinleiber/ClustPy

• > 20 recently introduced (deep) clustering algorithms implemented in 
sklearn style → Easy to use and apply

• > 70 benchmarking data sets (e.g., UCI, UCR, Torchvision, 
MedicalMNIST)

• Many performance metrics and visualization methods
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Outline

• Introduction to Clustering

• Introduction to Deep Clustering

• Application of Deep Clustering Algorithms

• Recent Approaches

• Outlook
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Clustering – Find a “meaningful” grouping
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Recap: K-Means

+ fast convergence,
+ well-defined objective function,
+ based on statistical model.
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1. random initialization
of the K cluster centers

2. assignment of objects
to the closest center

3. update of the centers 4. iteration of (2) and 
(3) until convergence



Recap: K-Means

Objective function:

𝐿 𝜇; 𝑥 = 

𝑖

𝐿 𝜇; 𝑥𝑖 =

𝑖

1

2
𝑥𝑖 − 𝑑𝑖 𝜇

2

Where the function 𝑗 ≔ 𝑑𝑖 𝜇 assigns the 𝑖𝑡ℎ point 𝑥𝑖 to its closest centroid 𝜇𝑗
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Algorithm k-Means

Input Parameter: Number K of clusters;

Randomly initialize the K cluster centers m1 … mK

Iterate the following steps until convergence:

Assign each object xi to the nearest centroid mj

Update the cluster centroids m = (m1 … mK)



SGD-K-Means

• Stochastic Gradient Descent Version of K-Means [BB94]
• Learned parameters for K-Means are the centroids 𝜇𝑗 , 𝑗 ∈ {0,1,… , K}
• Runs several times (epochs) over the full data set in randomized order

𝐿 𝜇; 𝑥𝑖 =
1

2
𝑥𝑖 − 𝑑𝑖 𝜇

2
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SGD-K-Means

• Stochastic Gradient Descent Version of K-Means [BB94]
• Learned parameters for K-Means are the centroids 𝜇𝑗 , 𝑗 ∈ {0,1,… , K}
• Runs several times (epochs) over the full data set in randomized order

• The gradient update for the loss function w.r.t. 𝜇

• Each point 𝑥𝑖 moves its respective center 𝜇𝑗 closer to 𝑥𝑖 by Δ𝜇

• Optimal learning rate a = 1/nj where nj is number of objects in cluster j
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Δ𝜇 = −𝛼 ∙
𝜕𝐿 𝜇;𝑥𝑖

𝜕𝜇
= ൝

𝛼 ∙ 𝑥𝑖 − 𝜇𝑗 , if 𝑗 = 𝑑𝑖(𝜇)

0, otherwise

𝐿 𝜇; 𝑥𝑖 =
1

2
𝑥𝑖 − 𝑑𝑖 𝜇

2



SGD-K-Means converges much faster
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• The random initialization may go wrong

• Classical K-Means would base a complete round
of assignment on the resulting boundary



SGD-K-Means converges much faster
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• The random initialization may go wrong

• Classical K-Means would base a complete round
of assignment on the resulting boundary

• After having seen e.g. 10 points, the centers are
already much better with SGD-K-Means

• SGD-K-Means continuously improves centers



SGD-K-Means converges much faster
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Minibatch-K-Means

Further improvements, e.g. in [PB10, APB13]:
• Consider additional update of center m whenever the cluster loses a point xi

• Consider occupation of network/bus when parallel processes exchange
information of centers m1 … mK
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Algorithm Minibatch-K-Means [S10]

Input Parameter: Number K of clusters;

Randomly initialize the K cluster centers m1 … mK

Iterate the following steps until convergence:

Select a Minibatch M;

Update centroids m1 … mK for each xi in M:

Δ𝜇 = −𝛼 ∙
𝜕𝐿 𝜇;𝑥𝑖

𝜕𝜇
= ൝

𝛼 ∙ 𝑥𝑖 − 𝜇𝑗 , if 𝑗 = 𝑑𝑖(𝜇)

0, otherwise



Outline

• Introduction to Clustering

• Introduction to Deep Clustering

• Application of Deep Clustering Algorithms

• Recent Approaches

• Outlook
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The Curse of Dimensionality in Clustering
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• Full-dimensional
• Gaussian clusters
• without outliers or noise.

• Subspace clusters
• and outliers.

• Arbitrarily shaped subspace clusters,
• of different density,
• noise and outliers.



Deep Representation Learning

• Successful for image, text, video, audio …
• Structured data

• High data volume

• Automated feature extraction (Representation Learning)
• Feature engineering requires domain knowledge

• Easy to parallelize
• GPU friendly

• Works on large amount of data
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Prerequisite: Autoencoder

• Learning is done via self-supervision – requires no labels 

• The prediction (output) is a reconstruction of the input data

• Goal: Low dimensional representation (embedding) of input data

𝑿𝑵×𝑫
𝑿𝑵×𝑫𝒁𝑵×𝒅
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Prerequisite: Autoencoder

• Learning is done via self-supervision – requires no labels 

• The prediction (output) is a reconstruction of the input data

• Goal: Low dimensional representation (embedding) of input data

𝑿𝟖×𝟕𝟖𝟒
𝑿𝟖×𝟕𝟖𝟒

𝒁𝟖×𝟐
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Autoencoder – Loss Function

• Compares the reconstruction ො𝑥 with the input 𝑥

• Quantifies the reconstruction loss which we want to minimize

• Common choices: Cross Entropy, Sum of Squared Differences
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Sequential Deep Clustering Approach

1) Use an autoencoder to learn a non-linear embedding of your data
i.e., Feature learning/Representation learning

𝑿𝟖×𝟕𝟖𝟒
𝑿𝟖×𝟕𝟖𝟒

𝒁𝟖×𝟐
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Sequential Deep Clustering Approach

1) Use an autoencoder to learn a non-linear embedding of your data
i.e., Feature learning/Representation learning

2) Cluster that data with some algorithm of your choice

𝑿𝟖×𝟕𝟖𝟒
𝑿𝟖×𝟕𝟖𝟒

𝒁𝟖×𝟐

22



Sequential Deep Clustering Approach

1) Use an autoencoder to learn a non-linear embedding of your data
i.e., Feature learning/Representation learning

2) Cluster that data with some algorithm of your choice

Note: This is not necessarily a bad idea and often useful, but it might 
limit our solution -> We are stuck to the initial representation



Notebook Example 

• Clustering of Autoencoder embedded space
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Can we do better?
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Option A: 

Correlation and 

outlier preserving 

representation

Deep 

Clustering

Option B: 

k-Means friendly 

representation

Initial 

representation

Yes! – Learn A Cluster Friendly Representation
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Deep Clustering - Overview

• Idea: Include the notion of clustering already during the autoencoder 
training

• Goal: We want to find all relevant cluster structure and improve it!

Problems:

• We need to specify a cluster model (inherit assumptions)

• We face circular dependency problem
• In order to learn a good representation we need to know what clusters we 

have
• In order to learn a good clustering we need to have already a good 

representation
• Deep Learning is not a magic bullet that solves this problem
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Deep Clustering – Toy Example

• Problems: We still face circular dependency problem 
• In order to learn a good representation we need to know what clusters we 

have

• In order to learn a good clustering we need to have already a good 
representation

• Here: Clusters are ripped apart

K-Means ClusteringInitial Representation Optimized Representation
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Deep Clustering - Approaches

• Alternating optimization
• Alternate between optimizing the representation and updating the clustering 

assignments

• Joint optimization
• Cluster assignments and representation are updated together

29



Deep Clustering - Approaches

• Alternating optimization
• Alternate between optimizing the representation and updating the clustering assignments

• Joint optimization
• Cluster assignments and representation are updated together

• Overall Goal: Learn a cluster friendly embedding
• Cluster friendly = Enhanced separation of clusters, Cluster structure is more distinct

• Increase inter-cluster distance and decrease intra-cluster distance

• Include structural constraints to avoid the “destruction” of structure, i.e. ripped apart 
clusters
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Outline

• Introduction to Clustering

• Introduction to Deep Clustering

• Application of Deep Clustering Algorithms

• Recent Approaches

• Outlook
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Alternating Optimization

1) Pretrain an autoencoder to learn a non-linear embedding of your
data
a) Set the dimensionality to min(𝑘, # features) . This “upper bound” avoids 

losing too much information. For a motivation of this rule of thumb see e.g.
the connections of K-means and PCA [DH04]

2) Initialize clustering with some algorithm (e.g. K-means)
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Toy Example – 1 Iteration

Initial K-Means 

Clustering

Pretrain

Autoencoder

Update 

representation

“move points 

closer to their 

centroids”
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Alternating Optimization

1) Pretrain an autoencoder to learn a non-linear embedding of your
data
a) Set the dimensionality to min(𝑘, # features) . This “upper bound” avoids 

losing too much information. For a motivation of this rule of thumb see e.g.
the connections of K-means and PCA [DH04]

2) Initialize clustering with some algorithm (e.g. K-means)

While cluster labels change:
a) Fix centroids and update the autoencoder parameters

- Move points closer to their centroids

b) Fix autoencoder parameters and update centroids and assignments
34



DCN-Deep Clustering Networks

• Deep Clustering Network (DCN)  [YFSH17] 
• Based on Mini-Batch K-means [S10]

• Centroids are not optimized via SGD, but are updated explicitly

• They use hard cluster assignments which are not differentiable

35



DCN-Deep Clustering Networks

• Deep Clustering Network (DCN)  [YFSH17] 
• Based on Mini-Batch K-means [S10]

• Centroids are not optimized via SGD, but are updated explicitly

• They use hard cluster assignments which are not differentiable

• Alternating optimization between clustering and autoencoder
• Because the calculation of cluster assignments is non-differentiable

• Alternate between
1) K-Means Step 

1) Assignments

2) Centroid updates

2) Autoencoder Step 
Preserve Global structure via Reconstruction and make clusters more “K-Means friendly” 
[YFSH17]  by “moving” points closer to their centroids 36



DCN-Deep Clustering Networks

• Deep Clustering Network (DCN)  [YFSH17] 

• Alternating optimization between clustering and autoencoder
• Alternate between

1) K-Means Step 
2) Autoencoder Step (Reconstruction + Compression)

Overall Loss Function 𝑙 = 𝜆𝑙𝑐 + 𝑙𝑅
Compression loss: 𝑙𝐶 = ||𝑧𝑖 − 𝜇𝑖||2

2

Reconstruction loss: 𝑙𝑅 = ||ෝ𝑥𝑖 − 𝑥𝑖||2
2

where 𝜆 is a hyperparameter weighing the importance of cluster structure
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Notebook Example 

• Deep clustering with DCN
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Joint Optimization

1) Pretrain an autoencoder to learn a non-linear embedding of your
data
a) Set the dimensionality to min(𝑘, # features) .

2) Initialize clustering with some algorithm (here K-means)
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Joint Optimization

1) Pretrain an autoencoder to learn a non-linear embedding of your
data
a) Set the dimensionality to min(𝑘, # features) .

2) Initialize clustering with some algorithm (here K-means)

3) While cluster labels change
Jointly optimize the clustering parameters (update centroids and assignments), 
together with the autoencoder
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Joint Optimization

1) Pretrain an autoencoder to learn a non-linear embedding of your
data
a) Set the dimensionality to min(𝑘, # features) .

2) Initialize clustering with some algorithm (here K-means)

3) While cluster labels change
Jointly optimize the clustering parameters (update centroids and assignments), 
together with the autoencoder

• Cluster procedure need to be differentiable

• Assignments need to be soft e.g. assignment probabilities

• Usually faster, because we can completely parallelize the procedure
41



DKM -Deep k-Means

• Deep k-Means (DKM) [FTG19]

• Truly joint learning of the representation and the k-Means clustering 
parameters

• Builds directly on the k-Means loss:

=> For Deep Clustering:

• Problem: f must be continuously differentiable!
f
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DKM -Deep k-Means

• We need a function

• This would lead to:
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DKM -Deep k-Means

• We need a function

• This would lead to:

• Use a parameterized softmax function

• Formulation is fully differentiable regarding the parameters of the 
autoencoder and the cluster centers M
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DKM -Deep k-Means

•

• For α close to 0 all centroids are equally weighted, for very large α it 
simulates hard cluster assignments

• How to choose a good value for α?
1. Possibility

- Pretrain the autoencoder
- Start clustering process with a large α (e.g., 1000)

2. Possibility
- Do not use pretraining
- Use an annealing strategy for α.

Start with small values and increase α after a certain amount of epochs
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Notebook Example 

• Deep clustering with DKM
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Coffee Break
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Welcome back. Any questions?
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DEC - Deep Embedded Clustering

• Deep Embedded Clustering (DEC) [XGF16] 
• Based on SGD-K-means with a student t-kernel for measuring the distance of 

an embedded data point 𝑧𝑖 to centroid 𝜇𝑗 in relation to its distance to all 
other centroids 𝜇𝑗′ except 𝜇𝑗:

𝑞𝑖,𝑗 =
1 + ||𝑧𝑖 − 𝜇𝑗||2

2 −1

σ𝑗′ 1 + ||𝑧𝑖 − 𝜇𝑗′ ||2
2

−1 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝜇𝑗

𝑠𝑢𝑚𝑚𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠

• 𝑞𝑖,𝑗 are soft assignments of the 𝑖𝑡ℎ data point to the 𝑗𝑡ℎ cluster 
centroid
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DEC - Deep Embedded Clustering

• 𝑄𝑁×𝐾 is the matrix of soft assignments 𝑞𝑖,𝑗 of 𝑁 data points to the 𝐾
centroids

• Achieved by measuring the distance with the Student’s t-kernel between all 
embedded points 𝑧𝑖 and centroids 𝜇𝑖 .
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DEC - Deep Embedded Clustering

• 𝑄𝑁×𝐾 is the matrix of soft assignments 𝑞𝑖,𝑗 of 𝑁 data points to the 𝐾
centroids

• Achieved by measuring the distance with the Student’s t-kernel between all 
embedded points 𝑧𝑖 and centroids 𝜇𝑖 .

• Target distribution 𝑃𝑁×𝐾:
[XGF16] define the following desirable properties for the target distribution P:

• strengthen predictions on data points assigned with high confidence

• normalize loss contribution for each centroid 
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DEC - Deep Embedded Clustering

• 𝑄𝑁×𝐾 is the matrix of soft assignments 𝑞𝑖,𝑗 of 𝑁 data points to the 𝐾
centroids

• Achieved by measuring the distance with the Student’s t-kernel between all 
embedded points 𝑧𝑖 and centroids 𝜇𝑖 .

• Target distribution 𝑃𝑁×𝐾:
[XGF16] define the following desirable properties for the target distribution P:

• strengthen predictions on data points assigned with high confidence

• normalize loss contribution for each centroid 

• 𝑞𝑖,𝑗
2 strengthens high confidence predictions

→ Assignments close to one will be kept higher than
undecided ones that are close to 0.5
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DEC - Deep Embedded Clustering

• 𝑄𝑁×𝐾 is the matrix of soft assignments 𝑞𝑖,𝑗 of 𝑁 data points to the 𝐾
centroids

• Achieved by measuring the distance with the Student’s t-kernel between all 
embedded points 𝑧𝑖 and centroids 𝜇𝑖 .

• Target distribution 𝑃𝑁×𝐾:
[XGF16] define the following desirable properties for the target distribution P:

• strengthen predictions on data points assigned with high confidence

• normalize loss contribution for each centroid 

• 𝑞𝑖,𝑗
2 strengthens high confidence predictions

• 𝑓𝑗 ≔ σ𝑖 𝑞𝑖,𝑗 (soft) frequency per cluster

→ Dividing by 𝑓𝑗 renormalizes by cluster size to
avoid that large clusters distort the embedding 53



DEC - Deep Embedded Clustering

• Minimize the KL divergence between the target distribution 𝑃 and the
cluster assignment Matrix 𝑄: 

𝑙 = 𝑙𝐶 = 𝐾𝐿 𝑃||𝑄 = 

𝑖



𝑗

𝑝𝑖,𝑗 log
𝑝𝑖,𝑗

𝑞𝑖,𝑗

• Measures how closely the assignment matrix 𝑄 matches the target
distribution 𝑃
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DEC - Deep Embedded Clustering

• Minimize the KL divergence between the target distribution 𝑃 and the
cluster assignment Matrix 𝑄: 

𝑙 = 𝑙𝐶 = 𝐾𝐿 𝑃||𝑄 = 

𝑖



𝑗

𝑝𝑖,𝑗 log
𝑝𝑖,𝑗

𝑞𝑖,𝑗

• Measures how closely the assignment matrix 𝑄 matches the target
distribution 𝑃

• Overall Intuition – Increase separation of clusters by moving 
embedded points closer to their centroids 𝜇𝑖 and repelling points 
from other centroids 𝜇𝑗 , 𝑗 ≠ 𝑖.

• Note that DEC does not use the reconstruction loss 𝑙𝑅 during the joint
optimization process 55



Notebook Example 

• Deep clustering with DEC
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IDEC-Improved Deep Embedded Clustering

• [GGLY17] proposed to keep the reconstruction loss during joint optimization with DEC to avoid such 
distorted solutions

• Their approach IDEC uses during the joint optimization both losses 

Overall loss function 𝑙 = 𝑙𝑅 + 𝜆𝑙𝑐

Compression loss: 𝑙𝐶 = 𝐾𝐿(𝑃||𝑄)

Reconstruction loss: 𝑙𝑅 = ||ෝ𝑥𝑖 − 𝑥𝑖||2
2
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IDEC-Improved Deep Embedded Clustering

• [GGLY17] proposed to keep the reconstruction loss during joint optimization with DEC to avoid such 
distorted solutions

• Their approach IDEC uses during the joint optimization both losses 

Overall loss function 𝑙 = 𝑙𝑅 + 𝜆𝑙𝑐

Compression loss: 𝑙𝐶 = 𝐾𝐿(𝑃||𝑄)

Reconstruction loss: 𝑙𝑅 = || ෝ𝑥𝑖 − 𝑥𝑖||2
2

• This alleviates to some degree the previous problem, but depends heavily on the hard to tune weighting 

hyperparameter 𝜆
• Introduces a new problem called Feature Drift [MMKK19] 

• The reconstruction loss and the clustering loss have conflicting goals
• Reconstruction Loss: Preserve the space as best as possible to reconstruct all features 

of the data
• Compression Loss: Increase the separation of the clusters and only focus on the 

most discriminative features
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Notebook Example 

• Deep clustering with IDEC
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Results

• Notebook summary

• What worked?

• What could be improved? 
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Results

• Notebook summary

• What worked?

• What could be improved? --> Augmentation
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Motivation - Augmentation

• Invariant representation learned by the autoencoder
• Autoencoder learns to ignore certain patterns, i.e., rotations, noise, shifts,…

• Invariances inside a cluster
• Cluster membership should not change due to spurious patterns i.e., slight 

rotations, lighting conditions, noise, shifts,…

• Include domain knowledge in the form of augmentation
• E.g., we know that slight rotations of digits do not change the label assigned 

to them.
• Strong rotations might flip the label, e.g., digits 6 and 9
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Domain Knowledge and Invariances

• Cluster membership should not change due to spurious patterns i.e.
slight rotations (Invariances inside clusters)

• 𝑥𝐴 ≔ 𝑎𝑢𝑔 𝑥 where 𝑎𝑢𝑔(⋅) are different augmentations that we add 
to the original data point 𝑥. 

• 𝑧𝐴 ≔ 𝑒𝑛𝑐 𝑎𝑢𝑔 𝑥 , ො𝑥𝐴 ≔ 𝑑𝑒𝑐(𝑧𝐴)
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Domain Knowledge and Invariances

• Cluster membership should not change due to spurious patterns i.e.
slight rotations (Invariances inside clusters)

• 𝑥𝐴 ≔ 𝑎𝑢𝑔 𝑥 where 𝑎𝑢𝑔(⋅) are different augmentations that we add 
to the original data point 𝑥. 

• 𝑧𝐴 ≔ 𝑒𝑛𝑐 𝑎𝑢𝑔 𝑥 , ො𝑥𝐴 ≔ 𝑑𝑒𝑐(𝑧𝐴)
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Domain Knowledge and Invariances

• Cluster membership should not change due to spurious patterns i.e.
slight rotations (Invariances inside clusters)

• 𝑥𝐴 ≔ 𝑎𝑢𝑔 𝑥 where 𝑎𝑢𝑔(⋅) are different augmentations that we add 
to the original data point 𝑥. 

• 𝑧𝐴 ≔ 𝑒𝑛𝑐 𝑎𝑢𝑔 𝑥 , ො𝑥𝐴 ≔ 𝑑𝑒𝑐(𝑧𝐴)
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Domain Knowledge and Invariances

• Cluster membership should not change due to spurious patterns i.e.
slight rotations (Invariances inside clusters)

• 𝑥𝐴 ≔ 𝑎𝑢𝑔 𝑥 where 𝑎𝑢𝑔(⋅) are different augmentations that we add 
to the original data point 𝑥. 

• 𝑧𝐴 ≔ 𝑒𝑛𝑐 𝑎𝑢𝑔 𝑥 , ො𝑥𝐴 ≔ 𝑑𝑒𝑐(𝑧𝐴)

• New loss function 𝑙 = 𝑙𝐶
𝐴 + 𝑙𝑅

𝐴

𝑙𝐶
𝐴 = ||𝑧𝑖 − 𝜇𝑖||2

2 + ||𝑧𝑖
𝐴 − 𝜇𝑖||2

2

𝑙𝑅
𝐴 = ||ෝ𝑥𝑖 − 𝑥𝑖||2

2 + || ො𝑥𝑖
𝐴 − 𝑥𝐴||2

2
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Domain Knowledge and Invariances
• Cluster membership should not change due to spurious patterns i.e.

slight rotations (Invariances inside clusters)

• 𝑥𝐴 ≔ 𝑎𝑢𝑔 𝑥 where 𝑎𝑢𝑔(⋅) are different augmentations that we add 
to the original data point 𝑥. 

• 𝑧𝐴 ≔ 𝑒𝑛𝑐 𝑎𝑢𝑔 𝑥 , ො𝑥𝐴 ≔ 𝑑𝑒𝑐(𝑧𝐴)

• New loss function 𝑙 = 𝑙𝐶
𝐴 + 𝑙𝑅

𝐴

𝑙𝐶
𝐴 = ||𝑧𝑖 − 𝜇𝑖||2

2 + ||𝑧𝑖
𝐴 − 𝜇𝑖||2

2

𝑙𝑅
𝐴 = ||ෝ𝑥𝑖 − 𝑥𝑖||2

2 + || ො𝑥𝑖
𝐴 − 𝑥𝐴||2

2

• We use the cluster assignments and centroids learned from our 
“clean” examples 

• Thus we force the augmented data points to be in the same cluster as 
their originals

=
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Notebook Example
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Outline

• Introduction to Clustering

• Introduction to Deep Clustering

• Application of Deep Clustering Algorithms

• Recent Approaches

• Outlook

69



Specialized Deep Clustering Algorithms 

• Flat & Centroid based approaches
• DEC [XGF16]
• IDEC [GGLY17]
• DCN [YFSH17]
• ACe/DeC [MBMTBP21]

• Spectral Clustering
• SpectralNet [SSLBNK18]
• DualAE [YDZYL19]

• Mutual Information
• IMSAT [HMTMS17]
• IIC [JHV19]

• Density based
• DDC [LCCC18]

• Probabilistic Methods
• ClusterGAN [MALK19]
• VADE [JYTTZ17]

• Other Approaches
• Hierarchical Clustering

• DeepECT [MPB19]
• Non-Redundant Clustering:

• ENRC [MMABP20]
• Subspace Clustering

• DSC [JZLSR17]
• K-estimation

• DipDECK [LBSBP21]
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Deep Non-Redundant Clustering

Non-redundant clusterings:
• Shapes : Cube, Cylinder, Sphere
• Colors: Red, Blue, Green,

Yellow Purple, Grey
• Material: Rubber, Metal

How to find all three clusterings with
unsupervised deep learning?

→Non-redundant clustering layer:
Softly split the embedded space with
learnable feature weights
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• Embedded Non-Redundant Clustering algorithm (ENRC) [MMABP20]



Deep Non-Redundant Clustering
Color Feature Space Material Feature Space Shape Feature Space
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Deep Hierarchical Clustering

Example:
Original Naïve Approach Projected Loss

• Based on Bisecting Kmeans model
• Recursively split embedded space in with 𝑘 = 2
• Uses projected cluster loss

• Preserve structure along orthogonal 
dimensions spanned by the two centroids

73

• Deep Embedded Cluster Tree (DeepECT) [MPB19]



Deep Hierarchical Clustering

Example:
Original Naïve Approach Projected Loss

• Based on Bisecting Kmeans model
• Recursively split embedded space in with 𝑘 = 2
• Uses projected cluster loss

• Preserve structure along orthogonal 
dimensions spanned by the two centroids
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• Deep Embedded Cluster Tree (DeepECT) [MPB19]

Restrict movement 

along the line spanned 

by the two centroids



Deep Hierarchical Clustering
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Deep Hierarchical Clustering

Finding populations and sub-populations and hierarchical structures e.g.
different types of 7’s and 2’s
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Deep Clustering with k-estimation

• Dip-based Deep Embedded Clustering with k-estimation (DipDECK) 
[LBSBP21]

• Problem: 'True' number of clusters is often unknown

• Idea: Overestimate the number of clusters and identify similar micro-
clusters

• Use Dip-test of unimodality to
rate similarity

• Micro-Clusters describing a
common structure should be
placed close to each other
-> If similarity is high enough, 
they can be merged
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Deep Clustering with k-estimation
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Outline

• Introduction to Clustering

• Introduction to Deep Clustering

• Application of Deep Clustering Algorithms

• Recent Approaches

• Outlook
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Discussion

• Pros:
• Finds clusters which are non-linearly hidden in the original space

• Can find higher “semantic” clusters e.g. digits, traffic signs, …

• No need for feature engineering, “only” need to choose an architecture which 
fits the data type, e.g. convolutional neural nets for image data.

• Fast inference for clustering unseen data from the same (unknown) 
distribution

• Centroids and interpolations in the embedded space can be reconstructed 
and visualized in the original space.

• Domain knowledge can be incorporated as data invariances

• Scales to large amounts of data and dimensions
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Discussion

• Cons:
• Only useful for larger quantities of data

• Works mostly on structured data, e.g., images, sound, text, …

• Embedded space is hard to interpret (black box optimization)

• Many hyperparameters (number of clusters, learning rate, batch size, 
architecture, …)

• Highly dependent on a good initialization (local optima)

• Sensitive to noise and outliers

• Research until now is mostly empirical, no strong theoretical guarantees

• High runtime in comparison to “classical” clustering methods

• Need for specialized hardware (e.g., CUDA enabled GPUs, TPUs, …)
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In Summary

• Representation learning for clustering (Deep Clustering) is an active 
research area (about 10 years of research)

• Many interesting algorithms have been proposed transferring 
“classical” clustering algorithms to the deep learning framework 
(similar to kernel approaches)

• Many problems of deep learning (e.g., high number of 
hyperparameters), which can be “easily” tackled in supervised 
learning are difficult to solve in deep unsupervised learning
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Question for the Audience

• Aside from clustering, in which cases are clustered representations useful?
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Question for the Audience

• Aside from clustering, in which cases are clustered representations useful?
• Some thoughts:

• In cases where abstraction is of interest, e.g., preserving only prototypical information
• Simplified representation

• Representations with less nuisance factors

• In cases where we want to enforce cluster structure in the representation
• Information retrieval

• Task acquisition in meta-reinforcement learning [JHGELF19]

• Other cases?

• In which might they be less useful?
• Fine grained classification tasks
• Generative tasks?
• …
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Open Problems in Deep Clustering

• Imbalanced clusters

• Adversarial Examples

• Fairness & Explainable AI

• Dependence on hyperparameters
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Imbalanced Clusters, Noise, Outliers
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Imbalanced clusters of different scales [DMPB22]. Massive amounts of noise points (80%) [MP16].



Adversarial Examples
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Slight modifications of the training images learned by a GAN can fool deep clustering methods [CSM22].



Fairness
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Protected attribute:
Data source
[ZLHPLP23]

Challenges:
• Single user-specified

protected attribute,
• Weighting between

fairness and quality.



Considering the evolution of clustering methods

20

High-dimensional 
data

Interpretability Runtime Parameterization

Traditional 
algorithms, e.g. K-
means (1950 and 
older)

--- +++ +++ -

Subspace and 
spectral methods, 
e.g., NR-K-means
[MYPB17]
(starting in the
1990ies)

+ ++ ++ --

Deep clustering
methods, e.g., 
ENRC [MMABP20] 
(popular since
2010)

+++ + --- ---



…hybrid methods might be the future.

20

High-dimensional 
data

Interpretability Runtime Parameterization

Traditional 
clustering
algorithms

--- +++ +++ -

Subspace and 
spectral methods

+ ++ ++ --

Deep clustering
methods

+++ + --- ---

Hybrid methods +++ expressiveness
where needed?

++ interpretable
where possible?

+ spend effort
where needed?

-- partly automatic?



Contact

• Collin Leiber: leiber@dbs.ifi.lmu.de

• Lukas Miklautz: lukas.miklautz@univie.ac.at

• Claudia Plant: claudia.plant@univie.ac.at

• Christian Böhm: christian.boehm@univie.ac.at

Check out at 
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