
Tutorial: Application of Deep
Clustering Algorithms

32nd ACM International Conference on Information and Knowledge Management

1Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
2MCML
3Faculty of Computer Science, University of Vienna, Vienna, Austria
4UniVie Doctoral School Computer Science, Vienna, Austria
5ds:UniVie, Vienna, Austria

Collin Leiber1,2, Lukas Miklautz3,4, Claudia Plant3,5, Christian Böhm3

Presenters

2

Collin Leiber Lukas Miklautz

Christian BöhmClaudia Plant

Hands-On

• Prepared jupyter notebook with examples

• Implemented in PyTorch and ClustPy

• Collab link for jupyter notebook: https://tinyurl.com/cikm23-clustpy

• Download link for material: https://tinyurl.com/cikm23-material

3

https://tinyurl.com/cikm23-clustpy
https://tinyurl.com/cikm23-material

ClustPy Package

• Link: https://github.com/collinleiber/ClustPy

• > 20 recently introduced (deep) clustering algorithms implemented in
sklearn style → Easy to use and apply

• > 70 benchmarking data sets (e.g., UCI, UCR, Torchvision,
MedicalMNIST)

• Many performance metrics and visualization methods

4

https://github.com/collinleiber/ClustPy

Outline

• Introduction to Clustering

• Introduction to Deep Clustering

• Application of Deep Clustering Algorithms

• Recent Approaches

• Outlook

5

Clustering – Find a “meaningful” grouping

6

Recap: K-Means

+ fast convergence,
+ well-defined objective function,
+ based on statistical model.

7

1. random initialization
of the K cluster centers

2. assignment of objects
to the closest center

3. update of the centers 4. iteration of (2) and
(3) until convergence

Recap: K-Means

Objective function:

𝐿 𝜇; 𝑥 =

𝑖

𝐿 𝜇; 𝑥𝑖 =

𝑖

1

2
𝑥𝑖 − 𝑑𝑖 𝜇

2

Where the function 𝑗 ≔ 𝑑𝑖 𝜇 assigns the 𝑖𝑡ℎ point 𝑥𝑖 to its closest centroid 𝜇𝑗

8

Algorithm k-Means

Input Parameter: Number K of clusters;

Randomly initialize the K cluster centers m1 … mK

Iterate the following steps until convergence:

Assign each object xi to the nearest centroid mj

Update the cluster centroids m = (m1 … mK)

SGD-K-Means

• Stochastic Gradient Descent Version of K-Means [BB94]
• Learned parameters for K-Means are the centroids 𝜇𝑗 , 𝑗 ∈ {0,1,… , K}
• Runs several times (epochs) over the full data set in randomized order

𝐿 𝜇; 𝑥𝑖 =
1

2
𝑥𝑖 − 𝑑𝑖 𝜇

2

9

SGD-K-Means

• Stochastic Gradient Descent Version of K-Means [BB94]
• Learned parameters for K-Means are the centroids 𝜇𝑗 , 𝑗 ∈ {0,1,… , K}
• Runs several times (epochs) over the full data set in randomized order

• The gradient update for the loss function w.r.t. 𝜇

• Each point 𝑥𝑖 moves its respective center 𝜇𝑗 closer to 𝑥𝑖 by Δ𝜇

• Optimal learning rate a = 1/nj where nj is number of objects in cluster j

10

Δ𝜇 = −𝛼 ∙
𝜕𝐿 𝜇;𝑥𝑖

𝜕𝜇
= ൝

𝛼 ∙ 𝑥𝑖 − 𝜇𝑗 , if 𝑗 = 𝑑𝑖(𝜇)

0, otherwise

𝐿 𝜇; 𝑥𝑖 =
1

2
𝑥𝑖 − 𝑑𝑖 𝜇

2

SGD-K-Means converges much faster

11

• The random initialization may go wrong

• Classical K-Means would base a complete round
of assignment on the resulting boundary

SGD-K-Means converges much faster

12

• The random initialization may go wrong

• Classical K-Means would base a complete round
of assignment on the resulting boundary

• After having seen e.g. 10 points, the centers are
already much better with SGD-K-Means

• SGD-K-Means continuously improves centers

SGD-K-Means converges much faster

13

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 10 20 30 40 50 60

(Number of Points Seen)

Minibatch-K-Means

Further improvements, e.g. in [PB10, APB13]:
• Consider additional update of center m whenever the cluster loses a point xi

• Consider occupation of network/bus when parallel processes exchange
information of centers m1 … mK

14

Algorithm Minibatch-K-Means [S10]

Input Parameter: Number K of clusters;

Randomly initialize the K cluster centers m1 … mK

Iterate the following steps until convergence:

Select a Minibatch M;

Update centroids m1 … mK for each xi in M:

Δ𝜇 = −𝛼 ∙
𝜕𝐿 𝜇;𝑥𝑖

𝜕𝜇
= ൝

𝛼 ∙ 𝑥𝑖 − 𝜇𝑗 , if 𝑗 = 𝑑𝑖(𝜇)

0, otherwise

Outline

• Introduction to Clustering

• Introduction to Deep Clustering

• Application of Deep Clustering Algorithms

• Recent Approaches

• Outlook

15

The Curse of Dimensionality in Clustering

16

• Full-dimensional
• Gaussian clusters
• without outliers or noise.

• Subspace clusters
• and outliers.

• Arbitrarily shaped subspace clusters,
• of different density,
• noise and outliers.

Deep Representation Learning

• Successful for image, text, video, audio …
• Structured data

• High data volume

• Automated feature extraction (Representation Learning)
• Feature engineering requires domain knowledge

• Easy to parallelize
• GPU friendly

• Works on large amount of data

17

Prerequisite: Autoencoder

• Learning is done via self-supervision – requires no labels

• The prediction (output) is a reconstruction of the input data

• Goal: Low dimensional representation (embedding) of input data

𝑿𝑵×𝑫
𝑿𝑵×𝑫𝒁𝑵×𝒅

18

Prerequisite: Autoencoder

• Learning is done via self-supervision – requires no labels

• The prediction (output) is a reconstruction of the input data

• Goal: Low dimensional representation (embedding) of input data

𝑿𝟖×𝟕𝟖𝟒
𝑿𝟖×𝟕𝟖𝟒

𝒁𝟖×𝟐

19

Autoencoder – Loss Function

• Compares the reconstruction ො𝑥 with the input 𝑥

• Quantifies the reconstruction loss which we want to minimize

• Common choices: Cross Entropy, Sum of Squared Differences

20

Sequential Deep Clustering Approach

1) Use an autoencoder to learn a non-linear embedding of your data
i.e., Feature learning/Representation learning

𝑿𝟖×𝟕𝟖𝟒
𝑿𝟖×𝟕𝟖𝟒

𝒁𝟖×𝟐

21

Sequential Deep Clustering Approach

1) Use an autoencoder to learn a non-linear embedding of your data
i.e., Feature learning/Representation learning

2) Cluster that data with some algorithm of your choice

𝑿𝟖×𝟕𝟖𝟒
𝑿𝟖×𝟕𝟖𝟒

𝒁𝟖×𝟐

22

Sequential Deep Clustering Approach

1) Use an autoencoder to learn a non-linear embedding of your data
i.e., Feature learning/Representation learning

2) Cluster that data with some algorithm of your choice

Note: This is not necessarily a bad idea and often useful, but it might
limit our solution -> We are stuck to the initial representation

Notebook Example

• Clustering of Autoencoder embedded space

24

Can we do better?

25

Option A:

Correlation and

outlier preserving

representation

Deep

Clustering

Option B:

k-Means friendly

representation

Initial

representation

Yes! – Learn A Cluster Friendly Representation

26

Deep Clustering - Overview

• Idea: Include the notion of clustering already during the autoencoder
training

• Goal: We want to find all relevant cluster structure and improve it!

Problems:

• We need to specify a cluster model (inherit assumptions)

• We face circular dependency problem
• In order to learn a good representation we need to know what clusters we

have
• In order to learn a good clustering we need to have already a good

representation
• Deep Learning is not a magic bullet that solves this problem

27

Deep Clustering – Toy Example

• Problems: We still face circular dependency problem
• In order to learn a good representation we need to know what clusters we

have

• In order to learn a good clustering we need to have already a good
representation

• Here: Clusters are ripped apart

K-Means ClusteringInitial Representation Optimized Representation

28

Deep Clustering - Approaches

• Alternating optimization
• Alternate between optimizing the representation and updating the clustering

assignments

• Joint optimization
• Cluster assignments and representation are updated together

29

Deep Clustering - Approaches

• Alternating optimization
• Alternate between optimizing the representation and updating the clustering assignments

• Joint optimization
• Cluster assignments and representation are updated together

• Overall Goal: Learn a cluster friendly embedding
• Cluster friendly = Enhanced separation of clusters, Cluster structure is more distinct

• Increase inter-cluster distance and decrease intra-cluster distance

• Include structural constraints to avoid the “destruction” of structure, i.e. ripped apart
clusters

30

Outline

• Introduction to Clustering

• Introduction to Deep Clustering

• Application of Deep Clustering Algorithms

• Recent Approaches

• Outlook

31

Alternating Optimization

1) Pretrain an autoencoder to learn a non-linear embedding of your
data
a) Set the dimensionality to min(𝑘, # features) . This “upper bound” avoids

losing too much information. For a motivation of this rule of thumb see e.g.
the connections of K-means and PCA [DH04]

2) Initialize clustering with some algorithm (e.g. K-means)

32

Toy Example – 1 Iteration

Initial K-Means

Clustering

Pretrain

Autoencoder

Update

representation

“move points

closer to their

centroids”

33

Alternating Optimization

1) Pretrain an autoencoder to learn a non-linear embedding of your
data
a) Set the dimensionality to min(𝑘, # features) . This “upper bound” avoids

losing too much information. For a motivation of this rule of thumb see e.g.
the connections of K-means and PCA [DH04]

2) Initialize clustering with some algorithm (e.g. K-means)

While cluster labels change:
a) Fix centroids and update the autoencoder parameters

- Move points closer to their centroids

b) Fix autoencoder parameters and update centroids and assignments
34

DCN-Deep Clustering Networks

• Deep Clustering Network (DCN) [YFSH17]
• Based on Mini-Batch K-means [S10]

• Centroids are not optimized via SGD, but are updated explicitly

• They use hard cluster assignments which are not differentiable

35

DCN-Deep Clustering Networks

• Deep Clustering Network (DCN) [YFSH17]
• Based on Mini-Batch K-means [S10]

• Centroids are not optimized via SGD, but are updated explicitly

• They use hard cluster assignments which are not differentiable

• Alternating optimization between clustering and autoencoder
• Because the calculation of cluster assignments is non-differentiable

• Alternate between
1) K-Means Step

1) Assignments

2) Centroid updates

2) Autoencoder Step
Preserve Global structure via Reconstruction and make clusters more “K-Means friendly”
[YFSH17] by “moving” points closer to their centroids 36

DCN-Deep Clustering Networks

• Deep Clustering Network (DCN) [YFSH17]

• Alternating optimization between clustering and autoencoder
• Alternate between

1) K-Means Step
2) Autoencoder Step (Reconstruction + Compression)

Overall Loss Function 𝑙 = 𝜆𝑙𝑐 + 𝑙𝑅
Compression loss: 𝑙𝐶 = ||𝑧𝑖 − 𝜇𝑖||2

2

Reconstruction loss: 𝑙𝑅 = ||ෝ𝑥𝑖 − 𝑥𝑖||2
2

where 𝜆 is a hyperparameter weighing the importance of cluster structure

37

Notebook Example

• Deep clustering with DCN

38

Joint Optimization

1) Pretrain an autoencoder to learn a non-linear embedding of your
data
a) Set the dimensionality to min(𝑘, # features) .

2) Initialize clustering with some algorithm (here K-means)

39

Joint Optimization

1) Pretrain an autoencoder to learn a non-linear embedding of your
data
a) Set the dimensionality to min(𝑘, # features) .

2) Initialize clustering with some algorithm (here K-means)

3) While cluster labels change
Jointly optimize the clustering parameters (update centroids and assignments),
together with the autoencoder

40

Joint Optimization

1) Pretrain an autoencoder to learn a non-linear embedding of your
data
a) Set the dimensionality to min(𝑘, # features) .

2) Initialize clustering with some algorithm (here K-means)

3) While cluster labels change
Jointly optimize the clustering parameters (update centroids and assignments),
together with the autoencoder

• Cluster procedure need to be differentiable

• Assignments need to be soft e.g. assignment probabilities

• Usually faster, because we can completely parallelize the procedure
41

DKM -Deep k-Means

• Deep k-Means (DKM) [FTG19]

• Truly joint learning of the representation and the k-Means clustering
parameters

• Builds directly on the k-Means loss:

=> For Deep Clustering:

• Problem: f must be continuously differentiable!
f

42

DKM -Deep k-Means

• We need a function

• This would lead to:

43

DKM -Deep k-Means

• We need a function

• This would lead to:

• Use a parameterized softmax function

• Formulation is fully differentiable regarding the parameters of the
autoencoder and the cluster centers M

44

DKM -Deep k-Means

•

• For α close to 0 all centroids are equally weighted, for very large α it
simulates hard cluster assignments

• How to choose a good value for α?
1. Possibility

- Pretrain the autoencoder
- Start clustering process with a large α (e.g., 1000)

2. Possibility
- Do not use pretraining
- Use an annealing strategy for α.

Start with small values and increase α after a certain amount of epochs

45

Notebook Example

• Deep clustering with DKM

46

Coffee Break

47

Welcome back. Any questions?

48

DEC - Deep Embedded Clustering

• Deep Embedded Clustering (DEC) [XGF16]
• Based on SGD-K-means with a student t-kernel for measuring the distance of

an embedded data point 𝑧𝑖 to centroid 𝜇𝑗 in relation to its distance to all
other centroids 𝜇𝑗′ except 𝜇𝑗:

𝑞𝑖,𝑗 =
1 + ||𝑧𝑖 − 𝜇𝑗||2

2 −1

σ𝑗′ 1 + ||𝑧𝑖 − 𝜇𝑗′ ||2
2

−1 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝜇𝑗

𝑠𝑢𝑚𝑚𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠

• 𝑞𝑖,𝑗 are soft assignments of the 𝑖𝑡ℎ data point to the 𝑗𝑡ℎ cluster
centroid

49

DEC - Deep Embedded Clustering

• 𝑄𝑁×𝐾 is the matrix of soft assignments 𝑞𝑖,𝑗 of 𝑁 data points to the 𝐾
centroids

• Achieved by measuring the distance with the Student’s t-kernel between all
embedded points 𝑧𝑖 and centroids 𝜇𝑖 .

50

DEC - Deep Embedded Clustering

• 𝑄𝑁×𝐾 is the matrix of soft assignments 𝑞𝑖,𝑗 of 𝑁 data points to the 𝐾
centroids

• Achieved by measuring the distance with the Student’s t-kernel between all
embedded points 𝑧𝑖 and centroids 𝜇𝑖 .

• Target distribution 𝑃𝑁×𝐾:
[XGF16] define the following desirable properties for the target distribution P:

• strengthen predictions on data points assigned with high confidence

• normalize loss contribution for each centroid

51

DEC - Deep Embedded Clustering

• 𝑄𝑁×𝐾 is the matrix of soft assignments 𝑞𝑖,𝑗 of 𝑁 data points to the 𝐾
centroids

• Achieved by measuring the distance with the Student’s t-kernel between all
embedded points 𝑧𝑖 and centroids 𝜇𝑖 .

• Target distribution 𝑃𝑁×𝐾:
[XGF16] define the following desirable properties for the target distribution P:

• strengthen predictions on data points assigned with high confidence

• normalize loss contribution for each centroid

• 𝑞𝑖,𝑗
2 strengthens high confidence predictions

→ Assignments close to one will be kept higher than
undecided ones that are close to 0.5

52

DEC - Deep Embedded Clustering

• 𝑄𝑁×𝐾 is the matrix of soft assignments 𝑞𝑖,𝑗 of 𝑁 data points to the 𝐾
centroids

• Achieved by measuring the distance with the Student’s t-kernel between all
embedded points 𝑧𝑖 and centroids 𝜇𝑖 .

• Target distribution 𝑃𝑁×𝐾:
[XGF16] define the following desirable properties for the target distribution P:

• strengthen predictions on data points assigned with high confidence

• normalize loss contribution for each centroid

• 𝑞𝑖,𝑗
2 strengthens high confidence predictions

• 𝑓𝑗 ≔ σ𝑖 𝑞𝑖,𝑗 (soft) frequency per cluster

→ Dividing by 𝑓𝑗 renormalizes by cluster size to
avoid that large clusters distort the embedding 53

DEC - Deep Embedded Clustering

• Minimize the KL divergence between the target distribution 𝑃 and the
cluster assignment Matrix 𝑄:

𝑙 = 𝑙𝐶 = 𝐾𝐿 𝑃||𝑄 =

𝑖

𝑗

𝑝𝑖,𝑗 log
𝑝𝑖,𝑗

𝑞𝑖,𝑗

• Measures how closely the assignment matrix 𝑄 matches the target
distribution 𝑃

54

DEC - Deep Embedded Clustering

• Minimize the KL divergence between the target distribution 𝑃 and the
cluster assignment Matrix 𝑄:

𝑙 = 𝑙𝐶 = 𝐾𝐿 𝑃||𝑄 =

𝑖

𝑗

𝑝𝑖,𝑗 log
𝑝𝑖,𝑗

𝑞𝑖,𝑗

• Measures how closely the assignment matrix 𝑄 matches the target
distribution 𝑃

• Overall Intuition – Increase separation of clusters by moving
embedded points closer to their centroids 𝜇𝑖 and repelling points
from other centroids 𝜇𝑗 , 𝑗 ≠ 𝑖.

• Note that DEC does not use the reconstruction loss 𝑙𝑅 during the joint
optimization process 55

Notebook Example

• Deep clustering with DEC

56

IDEC-Improved Deep Embedded Clustering

• [GGLY17] proposed to keep the reconstruction loss during joint optimization with DEC to avoid such
distorted solutions

• Their approach IDEC uses during the joint optimization both losses

Overall loss function 𝑙 = 𝑙𝑅 + 𝜆𝑙𝑐

Compression loss: 𝑙𝐶 = 𝐾𝐿(𝑃||𝑄)

Reconstruction loss: 𝑙𝑅 = ||ෝ𝑥𝑖 − 𝑥𝑖||2
2

57

IDEC-Improved Deep Embedded Clustering

• [GGLY17] proposed to keep the reconstruction loss during joint optimization with DEC to avoid such
distorted solutions

• Their approach IDEC uses during the joint optimization both losses

Overall loss function 𝑙 = 𝑙𝑅 + 𝜆𝑙𝑐

Compression loss: 𝑙𝐶 = 𝐾𝐿(𝑃||𝑄)

Reconstruction loss: 𝑙𝑅 = || ෝ𝑥𝑖 − 𝑥𝑖||2
2

• This alleviates to some degree the previous problem, but depends heavily on the hard to tune weighting

hyperparameter 𝜆
• Introduces a new problem called Feature Drift [MMKK19]

• The reconstruction loss and the clustering loss have conflicting goals
• Reconstruction Loss: Preserve the space as best as possible to reconstruct all features

of the data
• Compression Loss: Increase the separation of the clusters and only focus on the

most discriminative features

58

Notebook Example

• Deep clustering with IDEC

59

Results

• Notebook summary

• What worked?

• What could be improved?

60

Results

• Notebook summary

• What worked?

• What could be improved? --> Augmentation

61

Motivation - Augmentation

• Invariant representation learned by the autoencoder
• Autoencoder learns to ignore certain patterns, i.e., rotations, noise, shifts,…

• Invariances inside a cluster
• Cluster membership should not change due to spurious patterns i.e., slight

rotations, lighting conditions, noise, shifts,…

• Include domain knowledge in the form of augmentation
• E.g., we know that slight rotations of digits do not change the label assigned

to them.
• Strong rotations might flip the label, e.g., digits 6 and 9

62

Domain Knowledge and Invariances

• Cluster membership should not change due to spurious patterns i.e.
slight rotations (Invariances inside clusters)

• 𝑥𝐴 ≔ 𝑎𝑢𝑔 𝑥 where 𝑎𝑢𝑔(⋅) are different augmentations that we add
to the original data point 𝑥.

• 𝑧𝐴 ≔ 𝑒𝑛𝑐 𝑎𝑢𝑔 𝑥 , ො𝑥𝐴 ≔ 𝑑𝑒𝑐(𝑧𝐴)

63

Domain Knowledge and Invariances

• Cluster membership should not change due to spurious patterns i.e.
slight rotations (Invariances inside clusters)

• 𝑥𝐴 ≔ 𝑎𝑢𝑔 𝑥 where 𝑎𝑢𝑔(⋅) are different augmentations that we add
to the original data point 𝑥.

• 𝑧𝐴 ≔ 𝑒𝑛𝑐 𝑎𝑢𝑔 𝑥 , ො𝑥𝐴 ≔ 𝑑𝑒𝑐(𝑧𝐴)

64

Domain Knowledge and Invariances

• Cluster membership should not change due to spurious patterns i.e.
slight rotations (Invariances inside clusters)

• 𝑥𝐴 ≔ 𝑎𝑢𝑔 𝑥 where 𝑎𝑢𝑔(⋅) are different augmentations that we add
to the original data point 𝑥.

• 𝑧𝐴 ≔ 𝑒𝑛𝑐 𝑎𝑢𝑔 𝑥 , ො𝑥𝐴 ≔ 𝑑𝑒𝑐(𝑧𝐴)

65

Domain Knowledge and Invariances

• Cluster membership should not change due to spurious patterns i.e.
slight rotations (Invariances inside clusters)

• 𝑥𝐴 ≔ 𝑎𝑢𝑔 𝑥 where 𝑎𝑢𝑔(⋅) are different augmentations that we add
to the original data point 𝑥.

• 𝑧𝐴 ≔ 𝑒𝑛𝑐 𝑎𝑢𝑔 𝑥 , ො𝑥𝐴 ≔ 𝑑𝑒𝑐(𝑧𝐴)

• New loss function 𝑙 = 𝑙𝐶
𝐴 + 𝑙𝑅

𝐴

𝑙𝐶
𝐴 = ||𝑧𝑖 − 𝜇𝑖||2

2 + ||𝑧𝑖
𝐴 − 𝜇𝑖||2

2

𝑙𝑅
𝐴 = ||ෝ𝑥𝑖 − 𝑥𝑖||2

2 + || ො𝑥𝑖
𝐴 − 𝑥𝐴||2

2

66

Domain Knowledge and Invariances
• Cluster membership should not change due to spurious patterns i.e.

slight rotations (Invariances inside clusters)

• 𝑥𝐴 ≔ 𝑎𝑢𝑔 𝑥 where 𝑎𝑢𝑔(⋅) are different augmentations that we add
to the original data point 𝑥.

• 𝑧𝐴 ≔ 𝑒𝑛𝑐 𝑎𝑢𝑔 𝑥 , ො𝑥𝐴 ≔ 𝑑𝑒𝑐(𝑧𝐴)

• New loss function 𝑙 = 𝑙𝐶
𝐴 + 𝑙𝑅

𝐴

𝑙𝐶
𝐴 = ||𝑧𝑖 − 𝜇𝑖||2

2 + ||𝑧𝑖
𝐴 − 𝜇𝑖||2

2

𝑙𝑅
𝐴 = ||ෝ𝑥𝑖 − 𝑥𝑖||2

2 + || ො𝑥𝑖
𝐴 − 𝑥𝐴||2

2

• We use the cluster assignments and centroids learned from our
“clean” examples

• Thus we force the augmented data points to be in the same cluster as
their originals

=

67

Notebook Example

68

Outline

• Introduction to Clustering

• Introduction to Deep Clustering

• Application of Deep Clustering Algorithms

• Recent Approaches

• Outlook

69

Specialized Deep Clustering Algorithms

• Flat & Centroid based approaches
• DEC [XGF16]
• IDEC [GGLY17]
• DCN [YFSH17]
• ACe/DeC [MBMTBP21]

• Spectral Clustering
• SpectralNet [SSLBNK18]
• DualAE [YDZYL19]

• Mutual Information
• IMSAT [HMTMS17]
• IIC [JHV19]

• Density based
• DDC [LCCC18]

• Probabilistic Methods
• ClusterGAN [MALK19]
• VADE [JYTTZ17]

• Other Approaches
• Hierarchical Clustering

• DeepECT [MPB19]
• Non-Redundant Clustering:

• ENRC [MMABP20]
• Subspace Clustering

• DSC [JZLSR17]
• K-estimation

• DipDECK [LBSBP21]

70

Deep Non-Redundant Clustering

Non-redundant clusterings:
• Shapes : Cube, Cylinder, Sphere
• Colors: Red, Blue, Green,

Yellow Purple, Grey
• Material: Rubber, Metal

How to find all three clusterings with
unsupervised deep learning?

→Non-redundant clustering layer:
Softly split the embedded space with
learnable feature weights

71

• Embedded Non-Redundant Clustering algorithm (ENRC) [MMABP20]

Deep Non-Redundant Clustering
Color Feature Space Material Feature Space Shape Feature Space

72

Deep Hierarchical Clustering

Example:
Original Naïve Approach Projected Loss

• Based on Bisecting Kmeans model
• Recursively split embedded space in with 𝑘 = 2
• Uses projected cluster loss

• Preserve structure along orthogonal
dimensions spanned by the two centroids

73

• Deep Embedded Cluster Tree (DeepECT) [MPB19]

Deep Hierarchical Clustering

Example:
Original Naïve Approach Projected Loss

• Based on Bisecting Kmeans model
• Recursively split embedded space in with 𝑘 = 2
• Uses projected cluster loss

• Preserve structure along orthogonal
dimensions spanned by the two centroids

74

• Deep Embedded Cluster Tree (DeepECT) [MPB19]

Restrict movement

along the line spanned

by the two centroids

Deep Hierarchical Clustering

75

Deep Hierarchical Clustering

Finding populations and sub-populations and hierarchical structures e.g.
different types of 7’s and 2’s

76

Deep Clustering with k-estimation

• Dip-based Deep Embedded Clustering with k-estimation (DipDECK)
[LBSBP21]

• Problem: 'True' number of clusters is often unknown

• Idea: Overestimate the number of clusters and identify similar micro-
clusters

• Use Dip-test of unimodality to
rate similarity

• Micro-Clusters describing a
common structure should be
placed close to each other
-> If similarity is high enough,
they can be merged

77

Deep Clustering with k-estimation

78

Outline

• Introduction to Clustering

• Introduction to Deep Clustering

• Application of Deep Clustering Algorithms

• Recent Approaches

• Outlook

79

Discussion

• Pros:
• Finds clusters which are non-linearly hidden in the original space

• Can find higher “semantic” clusters e.g. digits, traffic signs, …

• No need for feature engineering, “only” need to choose an architecture which
fits the data type, e.g. convolutional neural nets for image data.

• Fast inference for clustering unseen data from the same (unknown)
distribution

• Centroids and interpolations in the embedded space can be reconstructed
and visualized in the original space.

• Domain knowledge can be incorporated as data invariances

• Scales to large amounts of data and dimensions

80

Discussion

• Cons:
• Only useful for larger quantities of data

• Works mostly on structured data, e.g., images, sound, text, …

• Embedded space is hard to interpret (black box optimization)

• Many hyperparameters (number of clusters, learning rate, batch size,
architecture, …)

• Highly dependent on a good initialization (local optima)

• Sensitive to noise and outliers

• Research until now is mostly empirical, no strong theoretical guarantees

• High runtime in comparison to “classical” clustering methods

• Need for specialized hardware (e.g., CUDA enabled GPUs, TPUs, …)

81

In Summary

• Representation learning for clustering (Deep Clustering) is an active
research area (about 10 years of research)

• Many interesting algorithms have been proposed transferring
“classical” clustering algorithms to the deep learning framework
(similar to kernel approaches)

• Many problems of deep learning (e.g., high number of
hyperparameters), which can be “easily” tackled in supervised
learning are difficult to solve in deep unsupervised learning

82

Question for the Audience

• Aside from clustering, in which cases are clustered representations useful?

83

Question for the Audience

• Aside from clustering, in which cases are clustered representations useful?
• Some thoughts:

• In cases where abstraction is of interest, e.g., preserving only prototypical information
• Simplified representation

• Representations with less nuisance factors

• In cases where we want to enforce cluster structure in the representation
• Information retrieval

• Task acquisition in meta-reinforcement learning [JHGELF19]

• Other cases?

• In which might they be less useful?
• Fine grained classification tasks
• Generative tasks?
• …

84

Open Problems in Deep Clustering

• Imbalanced clusters

• Adversarial Examples

• Fairness & Explainable AI

• Dependence on hyperparameters

85

Imbalanced Clusters, Noise, Outliers

86

Imbalanced clusters of different scales [DMPB22]. Massive amounts of noise points (80%) [MP16].

Adversarial Examples

87

Slight modifications of the training images learned by a GAN can fool deep clustering methods [CSM22].

Fairness

88

Protected attribute:
Data source
[ZLHPLP23]

Challenges:
• Single user-specified

protected attribute,
• Weighting between

fairness and quality.

Considering the evolution of clustering methods

20

High-dimensional
data

Interpretability Runtime Parameterization

Traditional
algorithms, e.g. K-
means (1950 and
older)

--- +++ +++ -

Subspace and
spectral methods,
e.g., NR-K-means
[MYPB17]
(starting in the
1990ies)

+ ++ ++ --

Deep clustering
methods, e.g.,
ENRC [MMABP20]
(popular since
2010)

+++ + --- ---

…hybrid methods might be the future.

20

High-dimensional
data

Interpretability Runtime Parameterization

Traditional
clustering
algorithms

--- +++ +++ -

Subspace and
spectral methods

+ ++ ++ --

Deep clustering
methods

+++ + --- ---

Hybrid methods +++ expressiveness
where needed?

++ interpretable
where possible?

+ spend effort
where needed?

-- partly automatic?

Contact

• Collin Leiber: leiber@dbs.ifi.lmu.de

• Lukas Miklautz: lukas.miklautz@univie.ac.at

• Claudia Plant: claudia.plant@univie.ac.at

• Christian Böhm: christian.boehm@univie.ac.at

Check out at

91

mailto:leiber@dbs.ifi.lmu.de
mailto:lukas.miklautz@univie.ac.at
mailto:claudia.plant@univie.ac.at
mailto:christian.boehm@univie.ac.at

References

92

[AGSC18] Elie Aljalbout, Vladimir Golkov, Yawar Siddiqui, Daniel Cremers:

Clustering with Deep Learning: Taxonomy and New Methods. CoRR abs/1801.07648 (2018)

[APB13] Muzaffer Can Altinigneli, Claudia Plant, Christian Böhm:

Massively parallel expectation maximization using graphics processing units. KDD 2013: 838-846

[BCV13] Yoshua Bengio, Aaron C. Courville, Pascal Vincent:

Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8): 1798-1828 (2013)

[BB94] Léon Bottou, Yoshua Bengio:

Convergence Properties of the K-Means Algorithms. NIPS 1994: 585-592

[CLX16] Shaosheng Cao, Wei Lu, Qiongkai Xu:

Deep Neural Networks for Learning Graph Representations. AAAI 2016: 1145-1152

[CSM22] Anshuman Chhabra, Ashwin Sekari, Prasant Mohapatra:

On the robustness of Deep Clustering Models. Adversarial Attacks and Defenses. NeurIPS2022

[DH04] Chris H. Q. Ding, Xiaofeng He:

K-means clustering via principal component analysis. ICML 2004

[DMPB22] Walid Durani, Dominik Mautz, Claudia Plant, Christian Böhm:

DBHD: Density-based clustering for highly varying density. ICDM 2022: 921-926

[FTG19] Maziar Moradi Fard, Thibaut Thonet, and Eric Gaussier

Deep k-means: Jointly clustering with k-means and learning representations. Pattern Recognition Letters

[GBC16] Ian Goodfellow and Yoshua Bengio and Aaron Courville:

Deep Learning. MIT Press, 2016

[GGLY17] Xifeng Guo, Long Gao, Xinwang Liu, Jianping Yin:

Improved Deep Embedded Clustering with Local Structure Preservation. IJCAI 2017: 1753-1759

[HPGAC18] Philip Häusser, Johannes Plapp, Vladimir Golkov, Elie Aljalbout, Daniel Cremers:

Associative Deep Clustering: Training a Classification Network with No Labels. GCPR 2018: 18-32

[JHGELF19] Allan Jabri, Kyle Hsu, Abhishek Gupta, Ben Eysenbach, Sergey Levine, Chelsea Finn:

Unsupervised Curricula for Visual Meta-Reinforcement Learning. NeurIPS 2019: 10519-10530

References

93

[JHV19] Xu Ji, João F. Henriques, Andrea Vedaldi:

Invariant Information Distillation for Unsupervised Image Segmentation and Clustering. ICCV 2019: forthcoming

[JZLSR17] Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann, Ian D. Reid:

Deep Subspace Clustering Networks. NIPS 2017: 24-33

[LBSBP21] Collin Leiber, Lena Bauer, Benjamin Schelling, Claudia Plant, Christian Böhm

Dip-based deep embedded clustering with k-estimation. KDD 2021: 903-913

[MSFK18] Naveen Sai Madiraju, Seid M. Sadat, Dimitry Fisher, Homa Karimabadi

Deep Temporal Clustering : Fully Unsupervised Learning of Time-Domain Features. CoRR abs/1802.01059 (2018): unpublished

[MZLC19] Qianli Ma, Jiawei Zheng, Sen Li, Gary W. Cottrell:

Learning Representations for Time Series Clustering. NeurIPS 2019: 3776-3786

[MPB19] Dominik Mautz, Claudia Plant and Christian Böhm:

Deep Embedded Cluster Tree. ICDM 2019: forthcoming

[MBMTBP21] Lukas Miklautz, Lena Bauer, Dominik Mautz, Sebastian Tschiatschek, Christian Böhm and Claudia Plant:

Details (Don’t) Matter: Isolating Cluster Information in Deep Embedded Spaces. IJCAI 2021: 2826-2832

[MMABP20] Lukas Miklautz, Dominik Mautz, Muzaffer Can Altinigneli, Christian Böhm and Claudia Plant:

Deep Embedded Non-Redundant Clustering. AAAI 2020: 5174-5181

[MMKK19] Nairouz Mrabah, Naimul Mefraz Khan, Riadh Ksantini:

Deep Clustering with a Dynamic Autoencoder. CoRR abs/1901.07752 (2019): unpublished

[MYPB18] Dominik Mautz, Wei Ye, Claudia Plant, Christian Böhm:

Towards an Optimal Subspace for K-Means. KDD 2017: 365-373

[MP16] Samuel Maurus, Claudia Plant:

Skinny-dip: Clustering in a Sea of Noise. KDD 2016: 1055-1064

[MALK19] Sudipto Mukherjee, Himanshu Asnani, Eugene Lin, Sreeram Kannan:

ClusterGAN: Latent Space Clustering in Generative Adversarial Networks. AAAI 2019: 4610-4617

[PB10] Claudia Plant, Christian Böhm:

Parallel EM-Clustering: Fast Convergence by Asynchronous Model Updates. ICDM Workshops 2010: 178-185

References

94

[S10] D. Sculley:

Web-scale k-means clustering. WWW 2010: 1177-1178

[SSLBNK18] Uri Shaham, Kelly P. Stanton, Henry Li, Ronen Basri, Boaz Nadler, Yuval Kluger:

SpectralNet: Spectral Clustering using Deep Neural Networks. ICLR 2018

[TNSZ19] Panagiotis Tzirakis, Mihalis A. Nicolaou, Björn W. Schuller, Stefanos Zafeiriou:

Time-series Clustering with Jointly Learning Deep Representations, Clusters and Temporal Boundaries. FG 2019: 1-5

[VLLBM10] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol:

Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 11: 3371-3408 (2010)

[HMTMS17] Weihua Hu, Takeru Miyato, Seiya Tokui, Eiichi Matsumoto, Masashi Sugiyama:

Learning Discrete Representations via Information Maximizing Self-Augmented Training. ICML 2017: 1558-1567

[XGF16] Junyuan Xie, Ross B. Girshick, Ali Farhadi:

Unsupervised Deep Embedding for Clustering Analysis. ICML 2016: 478-487

[YDZYL19] Xu Yang, Cheng Deng, Feng Zheng, Junchi Yan, Wei Liu:

Deep Spectral Clustering Using Dual Autoencoder Network. CVPR 2019: 4066-4075

[YFSH17] Bo Yang, Xiao Fu, Nicholas D. Sidiropoulos, Mingyi Hong:

Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering. ICML 2017: 3861-3870

[JYTTZ17] Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, Hanning Zhou:

Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering. IJCAI 2017: 1965-1972

[ZLHPLP23] Pengxin Zeng, Yunfan Li, Peng Hu, Dezhong Peng, Jiancheng Lv, Xi Peng

Deep Fair Clustering via Maximizing and Minimizing Mutual Information: Theory Algorithm and Metric. CVPR 2023: 23986-23995

	Folie 1: Tutorial: Application of Deep Clustering Algorithms
	Folie 2: Presenters
	Folie 3: Hands-On
	Folie 4: ClustPy Package
	Folie 5: Outline
	Folie 6: Clustering – Find a “meaningful” grouping
	Folie 7: Recap: K-Means
	Folie 8: Recap: K-Means
	Folie 9: SGD-K-Means
	Folie 10: SGD-K-Means
	Folie 11: SGD-K-Means converges much faster
	Folie 12: SGD-K-Means converges much faster
	Folie 13: SGD-K-Means converges much faster
	Folie 14: Minibatch-K-Means
	Folie 15: Outline
	Folie 16: The Curse of Dimensionality in Clustering
	Folie 17: Deep Representation Learning
	Folie 18: Prerequisite: Autoencoder
	Folie 19: Prerequisite: Autoencoder
	Folie 20: Autoencoder – Loss Function
	Folie 21: Sequential Deep Clustering Approach
	Folie 22: Sequential Deep Clustering Approach
	Folie 23: Sequential Deep Clustering Approach
	Folie 24: Notebook Example
	Folie 25: Can we do better?
	Folie 26
	Folie 27: Deep Clustering - Overview
	Folie 28: Deep Clustering – Toy Example
	Folie 29: Deep Clustering - Approaches
	Folie 30: Deep Clustering - Approaches
	Folie 31: Outline
	Folie 32: Alternating Optimization
	Folie 33: Toy Example – 1 Iteration
	Folie 34: Alternating Optimization
	Folie 35: DCN-Deep Clustering Networks
	Folie 36: DCN-Deep Clustering Networks
	Folie 37: DCN-Deep Clustering Networks
	Folie 38: Notebook Example
	Folie 39: Joint Optimization
	Folie 40: Joint Optimization
	Folie 41: Joint Optimization
	Folie 42: DKM -Deep k-Means
	Folie 43: DKM -Deep k-Means
	Folie 44: DKM -Deep k-Means
	Folie 45: DKM -Deep k-Means
	Folie 46: Notebook Example
	Folie 47: Coffee Break
	Folie 48: Welcome back. Any questions?
	Folie 49: DEC - Deep Embedded Clustering
	Folie 50: DEC - Deep Embedded Clustering
	Folie 51: DEC - Deep Embedded Clustering
	Folie 52: DEC - Deep Embedded Clustering
	Folie 53: DEC - Deep Embedded Clustering
	Folie 54: DEC - Deep Embedded Clustering
	Folie 55: DEC - Deep Embedded Clustering
	Folie 56: Notebook Example
	Folie 57: IDEC-Improved Deep Embedded Clustering
	Folie 58: IDEC-Improved Deep Embedded Clustering
	Folie 59: Notebook Example
	Folie 60: Results
	Folie 61: Results
	Folie 62: Motivation - Augmentation
	Folie 63: Domain Knowledge and Invariances
	Folie 64: Domain Knowledge and Invariances
	Folie 65: Domain Knowledge and Invariances
	Folie 66: Domain Knowledge and Invariances
	Folie 67: Domain Knowledge and Invariances
	Folie 68: Notebook Example
	Folie 69: Outline
	Folie 70: Specialized Deep Clustering Algorithms
	Folie 71: Deep Non-Redundant Clustering
	Folie 72: Deep Non-Redundant Clustering
	Folie 73: Deep Hierarchical Clustering
	Folie 74: Deep Hierarchical Clustering
	Folie 75: Deep Hierarchical Clustering
	Folie 76: Deep Hierarchical Clustering
	Folie 77: Deep Clustering with k-estimation
	Folie 78: Deep Clustering with k-estimation
	Folie 79: Outline
	Folie 80: Discussion
	Folie 81: Discussion
	Folie 82: In Summary
	Folie 83: Question for the Audience
	Folie 84: Question for the Audience
	Folie 85: Open Problems in Deep Clustering
	Folie 86: Imbalanced Clusters, Noise, Outliers
	Folie 87: Adversarial Examples
	Folie 88: Fairness
	Folie 89: Considering the evolution of clustering methods
	Folie 90: …hybrid methods might be the future.
	Folie 91: Contact
	Folie 92: References
	Folie 93: References
	Folie 94: References

