
Dip-based Deep Embedded Clustering with k-Estimation
Collin Leiber1∗, Lena G. M. Bauer2∗, Benjamin Schelling2, Christian Böhm1, Claudia Plant2

1Ludwig-Maximilians-Univeristät München, Munich, Germany {leiber, boehm}@dbs.ifi.lmu.de
2Universität Wien, Vienna, Austria {lena.bauer, benjamin.schelling, claudia.plant}@univie.ac.at

∗First authors with equal contribution

Introduction
The combination of clustering with Deep Learning
has gained much attention in recent years. Un-
supervised neural networks like autoencoders can
autonomously learn the essential structures in a
data set. This idea can be combined with clus-
tering objectives to learn relevant features auto-
matically. Unfortunately, these methods are often
based on a k-means framework and have to know
the number of clusters a-priori.
In this paper, we present the novel clustering
algorithm DipDECK, which can estimate the
number of clusters simultaneously to improving
a Deep Learning-based clustering objective. Our
algorithm works by heavily overestimating the
number of clusters in the embedded space of an
autoencoder and, based on Hartigan’s Dip-test
- a statistical test for unimodality -, analyses the
resulting micro-clusters to determine which to
merge.

Contributions:

1. We combine Deep Clustering with k-
Estimation by introducing Hartigan’s Dip-test
to Deep Learning

2. By repeatedly merging micro-clusters,
DipDECK is able to identify arbitrarily
shaped clusters

3. DipDECK shows impressive results, both in
estimating the number of clusters and in
cluster quality

Main Idea
• Pretrain the autoencoder (AE) by minimising

the reconstruction loss Lrec for each batch B

Lrec =
1

|B|
∑
x∈B

||x− dec(enc(x))||22,

• Run k-means in the embedded space with the
overestimated number of clusters kinit → get
closest points to the k-means centres, so that
they can serve as inputs to the AE

• Apply the Dip-test to obtain the Dip-value and
consequently the Dip-p-value for each pair-
wise combination of clusters in the embed-
ded space. Therefore, project each point as-
signed to either one of the clusters onto the
connection line of the corresponding centres
(figure in the right column illustrates this idea)

• For each batch encode the contained objects
and all the cluster centres

• Update the cluster assignments in a k-means
fashion

• Calculate the clustering objective Lclu =

(1 + std(DC))

mean(DC)

1

|B|
∑
x∈B

k∑
i=1

P̂cx,i||enc(x)−enc(µi)||22,

where cx is the label of the cluster x is as-
signed to and DC is the set of Euclidean dis-
tances between all embedded cluster centres

• mean(DC) hinders the autoencoder of just
reducing the embedding scale, std(DC) pre-
vents pushing individual clusters far away

• Final loss is: L = Lrec + Lclu

• Update all labels, cluster centres, and the
Dip-p-value matrix after each epoch

• Start merging if the maximum Dip-p-value is
larger than the threshold T :

– Reduce the number of clusters by one
and merge the two clusters responsible
for the Dip-p-value

– Repeat until no Dip-p-value ≥ T

⇒ Compared to methods like X-means or G-
means (with and without AE for dimensional-
ity reduction), DipDECK shows better results
for the estimated number of clusters and the
cluster quality. This shows the value of learn-
ing the embedding and estimating the number
of clusters simultaneously.

Algorithm
Input: data set X, starting number of

clusters kinit, Dip-p-value threshold
T , number of epochs n

Output: labels, k
1 k = kinit
2 AE = pretrained autoencoder
3 (kmCentres, labels) =

K-Means(AE.encode(X), k)
4 centres = find closest points to kmCentres
5 DipMatrix = calculate pairwise

Dip-p-values of the clusters in the
embedded space

6 i = 0
7 while i < n do
8 for B in X do
9 if i ̸= 0 then

10 update labels of B
11 calculate L = Lrec + Lclu for B
12 optimise AE using L
13 update all labels, centres and the

DipMatrix
14 i++
15 // Start merging process
16 while max(DipMatrix) ≥ T do
17 k--
18 merge clusters with highest

Dip-p-value → add the new centre
to centres and overwrite labels

19 update the DipMatrix
20 i = 0

21 return labels, k

Experiments

Method USPS MNIST F-MNIST Optdigist

k NMI k NMI k NMI k NMI

Ground truth 10 - 10 - 10 - 10 -

DipDECK (ours) 9.4 0.846 11.2 0.889 12.2 0.679 10.4 0.858
X-means 35.0 0.607 35.0 0.551 35.0 0.512 35.0 0.709
G-means 35.0 0.608 35.0 0.550 35.0 0.511 35.0 0.715
PG-means 2.4 0.136 2.1 0.175 4.1 0.312 1.1 0.024
Dip-means 4.0 0.438 † † † † 1.0 0.000
pDip-means 35.0 0.617 35.0 0.554 35.0 0.511 35.0 0.709
AE+X-means 2.0 0.293 18.1 0.620 24.4 0.570 12.8 0.804
AE+G-means 35.0 0.669 35.0 0.686 35.0 0.550 35.0 0.730
AE+PG-means 3.9 0.379 3.6 0.453 2.8 0.387 2.6 0.290
AE+Dip-means 6.8 0.617 † † † † 1.0 0.000
AE+pDip-means 4.9 0.519 8.0 0.705 5.8 0.522 1.0 0.000

• Impressive results regarding estimated num-
ber of clusters and cluster quality (NMI, ARI)

• Variances show high stability of the results

• High robustness regarding kinit and T

• Sometimes a slight overestimation of the num-
ber of clusters → Can reveal interesting sub-
structures in the data (see image on the right)

Example Run

